Previous evidence suggests that guanine nucleotides can directly inhibit N-methyl-d-aspartate (NMDA) and AMPA/kainate receptors and antagonize a variety of cellular functions elicited by these glutamate receptor agonists. We investigated the possibility that the guanine nucleotides GTP, GDP, and GMP exert a neuroprotective effect on cultured rat hippocampal or neocortical neurons exposed to the excitotoxicants NMDA (30 microM) or kainate (300 microM). On co-application with NMDA all three nucleotides revealed a comparable rescue effect from 100 microM nucleotide concentrations onwards, with a higher inhibitory potential in hippocampal than in neocortical cultures. Similarly, kainate-induced neurotoxicity was inhibited by all three nucleotides but the inhibitory potential was lower than after application of NMDA. Guanosine had no effect on either culture system. GTP and GDP where hydrolyzed by hippocampal and cortical cultures with GMP accumulating in the medium, suggesting that hydrolysis of GTP had no effect on the effective nucleotide concentration. Our results show that GTP, GDP, and GMP inhibit NMDA- and kainate-mediated neurotoxicity in cultured hippocampal and neocortical neurons. They suggest that guanine nucleotides may be candidates for broadly antagonizing glutamate receptor-mediated neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2003.11.017 | DOI Listing |
Nat Commun
January 2025
Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran.
Inosine Monophosphate Dehydrogenase (IMPDH) catalyzes rate-limiting step of the reaction converting inosine monophosphate (IMP) to guanine nucleotides. IMPDH is up-regulated in the healthy proliferating cells and also in tumor cells to meet their elevated demand for guanine nucleotides. An exclusive regulatory mechanism for this enzyme is filamentation, through which IMPDH can resist allosteric inhibition by the end product, GTP.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose.
View Article and Find Full Text PDFVet Res
January 2025
National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!