Tachpyridine (N,N',N"-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane; tachpyr) is a potent hexadentate iron chelator under preclinical investigation as a potential anti-cancer agent. Tachpyridine induces apoptosis in cultured cancer cells by triggering a mitochondrial pathway of cell death that is p53-independent. To explore the relationship between the chelation chemistry of tachpyridine and its biological activity, a sensitive and specific reversed-phase high-performance liquid chromatography (RP-HPLC) method was devised and used to measure tachpyr and its metal complexes in cells and tissue culture media. Major species identified in cells treated with tachpyr were tachpyr itself, [Zn(tachpyr)](2+), and iron coordinated to two partially oxidized species of tachpyridine, [Fe(tachpyr-ox-2)](2+), and [Fe(tachpyr-ox-4)](2+). The kinetics of intracellular accumulation of [Zn(tachpyr)](2+) and [Fe(tachpyr-ox-2)](2+) were markedly different: [Zn(tachpyr)](2+) rapidly reached plateau levels, whereas intracellular levels of [Fe(tachpyr-ox-2)](2+) and free tachpyr rose steadily. At the last timepoint measured, 9% of total cellular iron and 13% of total cellular zinc were bound by tachpyridine. Taken together, [Zn(tachpyr)](2+), [Fe(tachpyr-ox-2)](2+), and free tachpyr accounted for virtually all of the tachpyr added, indicating that iron and zinc are the principal metals targeted by tachpyridine in cells. Consistent with these findings, activation of the apoptotic caspases 9 and 3 was blocked in cells pre-treated with either iron or zinc. Pretreatment with either of these metals also completely protected cells from the cytotoxic effects of tachpyridine. These results demonstrate a link between metal depletion and chelator cytotoxicity, and suggest that intracellular chelation of zinc as well as iron may play a role in the cytotoxicity of tachpyridine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2003.12.036 | DOI Listing |
Dalton Trans
July 2017
Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary. and MTA-SZTE Bioinorganic Chemistry Research Group, Dóm tér 7, H-6720 Szeged, Hungary.
Manganese(ii), copper(ii) and zinc(ii) complexes of four polydentate tripodal ligands (tachpyr (N,N',N''-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane), trenpyr (tris[2-(2-pyridylmethyl)aminoethyl]amine, tach3pyr (N,N',N''-tris(3-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane) and tren3pyr (tris[2-(2-pyridylmethyl)aminoethyl]amine)) were characterized in both solution and solid states. A combined evaluation of potentiometric, UV-VIS, NMR and EPR data allowed the conclusion of both thermodynamic and structural information about the complexes formed in solution. The four tailored polydentate tripodal ligands studied here exhibit a high thermodynamic stability, and a variety of coordination environments/geometries for the studied transition metal ions.
View Article and Find Full Text PDFCurr Med Chem
November 2009
Department of Chemistry, Valdosta State University, Valdosta, GA 31698, USA.
Iron chelators are being examined as a potential class of pharmaceutical agents to battle different types of cancer as well as iron overload diseases. In recent studies, iron binding species such as desferrioxamine, triapine, tachpyridine, Dp44Mt, and PIH have been tested in cell line tests and clinical trials. Using published chemical equilibrium values (stability constants, equilibrium constants), it is argued that an iron chelator cannot competitively remove iron from a heme-containing biomolecule (i.
View Article and Find Full Text PDFJ Inorg Biochem
January 2008
Department of Chemistry, University of New Hampshire, Durham, NH 03824-3598, USA.
The Fe coordination chemistry of several tripodal aminopyridyl hexadentate chelators is reported along with cytotoxicity toward cultured Hela cells. The chelators are based on cis, cis-1,3,5-triaminocyclohexane (tach) with three pendant -CH2-2-pyridyl groups where 2-pyridyl is R-substituted thus are named tach-x-Rpyr where x=3, R=Me; x=3, R=MeO; x=6; R=Me. The structures of [Fe(tach-3-Mepyr)]Cl2 and [Fe(tach-3-MeOpyr)](FeCl4) are reported and their metric parameters indicate strongly bound, low-spin Fe(II).
View Article and Find Full Text PDFJ Med Chem
December 2005
Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA.
Preorganized tripodal ligands such as the N-picolyl derivatives of cis,cis-1,3,5-triamino-cis,cis-1,3,5-trimethylcyclohexane (Kemp's triamine) were prepared as analogues to N,N',N''-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane (tachpyr) in hopes of enhancing the rate of formation and stability of the metal complexes. A tricyclic bisaminal was formed via the reduction of the Schiff base, while the tri(picolyl) derivative was synthesized via reductive amination of pyridine carboxaldehyde. Their cytotoxicities to the HeLa cell line were evaluated and directly compared to tachpyr and N,N',N''-tris(2-pyridylmethyl)tris(2-aminoethyl)amine (trenpyr).
View Article and Find Full Text PDFBioorg Med Chem
November 2005
Department of Biochemistry, The Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Tachpyridine is a cytotoxic metal chelator with potential anti-tumor activity. The synthesis and evaluation of a set of derivatives of the related hexadentate heterocyclic donor agents tris-2-aminoethylamine (tren) and tris[N-(2-pyridylmethylene)-2-aminoethyl]amine (trenpyr) was performed to compare their cytotoxic activity to tachpyridine in HeLa tumor cells. Methyl groups were added to the pyridyl ring of trenpyr, and the effects of alkyl group substitution on cell survival were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!