Ion channels and lymphocyte activation.

Immunol Lett

Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

Published: March 2004

The ion channels expressed by T lymphocytes play key roles in the control of the membrane potential and calcium signaling, thereby affecting signal transduction pathways that lead to the activation of these cells following antigenic stimulation. Disruption of these pathways can attenuate or prevent the response of T-cells to antigenic challenge resulting in immune suppression. Studies using ion channel blockers of high affinity and specificity have shown that this interference can be achieved at the level of ion channels. Suppression of immune functions by channel blockers has been demonstrated in vitro and in vivo. New information about the molecular structure of ion channels facilitates the design of more potent and more specific inhibitors. Thus, T-cell ion channels are likely to serve as targets for immunomodulatory drugs in the near future. Here, the biophysical properties, tissue distribution, regulation of expression, molecular pharmacology and role in T-cell activation of the voltage-gated Kv1.3 and the Ca(2+)-activated IKCa1 potassium channels and those of the Ca(+) release-activated Ca(2+) (CRAC) channel are reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2003.11.020DOI Listing

Publication Analysis

Top Keywords

ion channels
20
channel blockers
8
ion
6
channels
5
channels lymphocyte
4
lymphocyte activation
4
activation ion
4
channels expressed
4
expressed lymphocytes
4
lymphocytes play
4

Similar Publications

Behavioral Profiling in Zebrafish Identifies Insecticide-Related Compounds.

J Agric Food Chem

January 2025

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158, United States.

Pesticides, including insecticides, are indispensable for large-scale agriculture. Modulating chloride ion channels has proven highly successful as a mode of action (MoA) for insect management. Identifying new ligands for these channels affords opportunities for the potential development of new insecticide products.

View Article and Find Full Text PDF

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!