QSAR study on CA inhibitory activity of disulfonamides: effect of halogen substitution.

Bioorg Med Chem

Research Division, Laxmi Fumigation and Pest Control (P), 3, Khatipura, Indore 452007, India.

Published: May 2004

The paper deals with quantitative structure-activity relationship (QSAR) study on CA inhibitory activity (logIC(50)) of disulfonamides using a large series of distance-based topological indices. The study discusses effect due to halogen-substitution nearer (o-position) to -SO(2)NH(2) groups. The results have shown that halogen substitution at R(3) has pronounced effect on the inhibitory activity. Predictive power of the proposed models is discussed on the basis of regression data and cross-validation parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2004.01.049DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
12
qsar study
8
study inhibitory
8
halogen substitution
8
activity disulfonamides
4
disulfonamides halogen
4
substitution paper
4
paper deals
4
deals quantitative
4
quantitative structure-activity
4

Similar Publications

Background And Objective: Limited information is available on the pharmacokinetics of rifampicin (RIF) along with that of its active metabolite, 25-deacetylrifampicin (25-dRIF). This study aimed to analyse the pharmacokinetic data of RIF and 25-dRIF collected in adult patients treated for tuberculosis.

Methods: In adult patients receiving 10 mg/kg of RIF as part of a standard regimen for drug-susceptible pulmonary tuberculosis enrolled in the Opti-4TB study, plasma RIF and 25-dRIF concentrations were measured at various occasions.

View Article and Find Full Text PDF

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

Background: Concurrent exercise (CE), an emerging exercise modality characterized by sequential bouts of aerobic (AE) and resistance exercise (RE), has demonstrated acute benefits on executive functions (EFs) and neuroelectric P3 amplitude. However, the effect of acute CE on inhibitory control, a sub-component of EFs, and P3 amplitude remains inconclusive. Moreover, exploring the mechanisms underlying the effects of acute exercise on EFs contributes to scientific comprehension, with lactate recognized as a crucial candidate positively correlated with EFs.

View Article and Find Full Text PDF

Cyclic diguanosine monophosphate (c-di-GMP) is a ubiquitous bacterial secondary messenger with diverse functions. A previous Escherichia coli proteome microarray identified that c-di-GMP binds to the 23S rRNA methyltransferases RlmI and RlmE. Here we show that c-di-GMP inhibits RlmI activity in rRNA methylation assays, and that it modulates ribosome assembly in the presence of kanamycin.

View Article and Find Full Text PDF

The ejaculatory reflex consists of emission and expulsion, with the latter involving rhythmic muscular contractions that propel seminal fluid. Botulinum toxin, through its inhibitory effects, has been hypothesized to improve premature ejaculation (PE). This study evaluates high-quality evidence on botulinum toxin-A injections into the bulbospongiosal muscle as a treatment for PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!