Volatile species of the conventional hydride-forming elements (As, Bi, Sb, Se, Sn, Pb, Cd, Te), Hg, transition metals (Ni, Co, Cu, Fe), noble metals (Ag, Au, Rh, Pd, Pt), and nonmetals (I, S) were generated following UV irradiation of their aqueous solutions to which low molecular weight carboxylic acids (formic, acetic, propionic) had been added. Free radicals arising from photodissociation of the latter provide a new and useful alternative to the common methods of chemical/electrochemical vapor generation techniques for the determination of these analytes by atomic spectrometry. Quantitative estimates of the efficiencies of these generation processes were not undertaken, although calculated signal-to-background ratios (>1500 for 5 ng/mL As, Sb, Bi, Se, and Te; 20 for 10 ng/mL Sn, Cu, Rh, Au, Pd, Pt, and Cd; 2400 for 1 ng/mL Hg; and 1000 for Co using ICP-TOF-MS detection) do provide clear evidence of the efficacy of this approach for sample introduction. In the case of Ni and Se, the tetracarbonyl and alkylated selenium compounds have been identified, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0353536DOI Listing

Publication Analysis

Top Keywords

vapor generation
8
sample introduction
8
atomic spectrometry
8
generation irradiation
4
irradiation sample
4
introduction atomic
4
spectrometry volatile
4
volatile species
4
species conventional
4
conventional hydride-forming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!