Increased accumulation of alpha-synuclein is associated with certain neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). One mechanism of alpha-synuclein-induced toxicity involves increased oxidative stress. It was unknown whether neurons overexpressing alpha-synuclein would exhibit increased sensitivity to hydrogen peroxide (H(2)O(2)) or 3-morpholinosydnonimine (SIN-1; a nitrous oxide donor). To study this, we developed a murine neuroblastoma (NB) cell line that overexpresses wild-type human alpha-synuclein (NBP2-PN54) under the control of the cytomegalovirus (CMV) promoter using a retroviral vector. Human alpha-synuclein mRNA and protein were readily detectable in NBP2-PN54 cells. Results showed that differentiated NBP2-PN54 cells exhibited decreased viability in comparison to differentiated vector (NBP2-PN1) and parent (NBP2) control cells. These cells also exhibited increased sensitivity to PGE(2), H(2)O(2) and SIN-1. Because of involvement of proteasome inhibition in neurodegeneration, we also investigated whether treatment of differentiated NBP2-PN54 cells with PGE(2), H(2)O(2) or SIN-1 inhibits proteasome activity. Results showed that H(2)O(2) and SIN-1 inhibited proteasome activity, but PGE(2) did not. These results suggest that overexpression of alpha-synuclein not only participates directly in degeneration of neurons, but it also increases the vulnerability of neurons to other potential neurotoxins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20058 | DOI Listing |
J Am Coll Nutr
December 2005
Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA.
Objective: High levels of wild-type alpha-synuclein are found in autopsied brain samples of idiopathic Parkinson's disease (PD), some familial PD, some Alzheimer's disease (AD) and Down's syndrome with dementia. Therefore, we have investigated whether overexpression of wild-type alpha-synuclein causes degeneration during adenosine, 3',5'-cyclic monophosphate (cAMP)-induced differentiation of murine neuroblastoma (NB) cells in culture. We have also studied whether selenomethionine can modify the effect of overexpression of alpha-synuclein during differentiation of NB cells.
View Article and Find Full Text PDFJ Neurosci Res
May 2004
Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA.
Increased accumulation of alpha-synuclein is associated with certain neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). One mechanism of alpha-synuclein-induced toxicity involves increased oxidative stress. It was unknown whether neurons overexpressing alpha-synuclein would exhibit increased sensitivity to hydrogen peroxide (H(2)O(2)) or 3-morpholinosydnonimine (SIN-1; a nitrous oxide donor).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!