Mutations in the parkin gene are common in early-onset and familial Parkinson's disease (PD), and the parkin protein interacts in the ubiquitin-proteasome system as an E3 ligase. However, the regulatory pathways that govern parkin expression are unknown. In this study, we showed that a phylogenetically conserved N-myc binding site in the bi-directional parkin promoter interacted with myc-family transcription factors in reporter assays, and N-myc bound to the parkin promoter in chromatin immunoprecipitation assays and repressed transcription activity. Parkin expression was inversely correlated with N-myc levels in the developing mouse and human brain, in human neuroblastoma cell lines with various levels of n-myc amplification, and in an inducible N-myc cell line. Although parkin and N-myc expression were dramatically altered upon retinoic acid-induced differentiation of a human neuroblastoma cell line, modulation of parkin expression did not significantly affect either rates of cellular proliferation or levels of cyclin E. Analysis of additional genes associated with familial PD revealed a shared basis of transcription regulation mediated by N-myc and the cell cycle. Our results, in combination with functional knowledge of the proteins encoded by these genes, suggest a common pathway linking together PD, the ubiquitin-proteasome system, and cell cycle control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M400126200 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.
Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.
Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).
J Intensive Med
January 2025
Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China.
Background: The roles of the Pink1/Parkin pathway and mitophagy in lung injury during heat stroke remain unclear. In this study, we investigated the role of Pink1/Parkin-mediated mitophagy in acute lung injury (ALI) in rats with exertional heat stroke (EHS).
Methods: Sixty Sprague Dawley rats were randomly divided into control (CON), control + Parkin overexpression (CON + Parkin), EHS, and EHS + Parkin overexpression (EHS + Parkin) groups.
J Ginseng Res
January 2025
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
Background: Ginseng Berry Concentrate (GBC) enhances exercise capacity in mice, but the effects of its key component, ginsenoside Re (G-Re), on aging and mitochondrial function are not well understood. This study investigates the impact of G-Re on mitophagy and its potential to promote healthy aging.
Methods: Experiments in C2C12 myocytes and HeLa-mitoKeima-PARKIN cells assessed GBC and G-Re's effects on mitophagy, supported by Gene Set Enrichment Analysis.
Cell Death Dis
January 2025
Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.
Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
The multi-kinase inhibitor sorafenib has shown potential to inhibit tumor cell growth and intra-tumoral angiogenesis by targeting several kinases, including VEGFR2 and RAF. Abnormal activation of the Ras/Raf/MAPK/ERK kinase cascade and the VEGF pathway is a common feature in breast cancer. However, the efficacy of sorafenib in breast cancer treatment remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!