We evaluated the disk susceptibility data of 671 nontyphoid Salmonella isolates collected from different parts of Taiwan from March 2001 to August 2001 and 1,261 nontyphoid Salmonella isolates from the National Taiwan University Hospital from 1996 to 2001. Overall, ciprofloxacin resistance was found in 2.7% (18/671) of all nontyphoid Salmonella isolates, in 1.4% (5/347) of Salmonella enterica serotype Typhimurium and in 7.5% (8/107) in S. enterica serotype Choleraesuis nationwide. MICs of six newer fluoroquinolones were determined for the following isolates: 37 isolates of ciprofloxacin-resistant (human) S. Typhimurium (N = 26) and Choleraesuis (N = 11), 10 isolates of ciprofloxacin-susceptible (MIC <1 mg/mL) (human) isolates of these two serotypes, and 15 swine isolates from S. Choleraesuis (N = 13) and Typhmurium (N = 2) with reduced susceptibility to ciprofloxacin (MIC >0.12 microg/mL). Sequence analysis of the gryA, gyrB, parC, parE, and acrR genes, ciprofloxacin accumulation, and genotypes generated by pulsed-field gel electrophoresis with three restriction enzymes (SpeI, XbaI, and BlnI) were performed. All 26 S. Typhimurium isolates from humans and pigs belonged to genotype I. For S. Choleraesuis isolates, 91% (10/11) of human isolates and 54% (7/13) of swine isolates belonged to genotype B. These two genotypes isolates from humans all exhibited a high-level of resistance to ciprofloxacin (MIC 16-64 mg/mL). They had two-base substitutions in the gyrA gene at codons 83 (Ser83Phe) and 87 (Asp87Gly or Asp87Asn) and in the parC gene at codon 80 (Ser80Arg, Ser80Ile, or Ser84Lys). Our investigation documented that not only did these two S. enterica isolates have a high prevalence of ciprofloxacin resistance nationwide but also that some closely related ciprofloxacin-resistant strains are disseminated from pigs to humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322755 | PMC |
http://dx.doi.org/10.3201/eid1001.030171 | DOI Listing |
Front Microbiol
January 2025
Roman L. Hruska, US Meat Animal Research Center, Meat Safety and Quality Research Unit, USDA ARS, Clay Center, NE, United States.
Introduction: Non-typhoidal (NTS) are leading bacterial agents of foodborne illnesses and a global concern for human health. While there are over 2,600 different serovars of NTS, epidemiological data suggests that certain serovars are better at causing disease than others, resulting in the majority of reported human illnesses in the United States. To improve food safety, there is a need to rapidly detect these more pathogenic serovars to facilitate their removal from the food supply.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Cardiology, Montefiore Hospital and Medical Center, Bronx, New York, USA.
We present a case of a young man in his early 20s who presented to the hospital with acute onset of central chest pain, preceded by epigastric fullness and diarrhoea 5 days after consuming a meal containing chicken products. Following an extensive evaluation, he was diagnosed with -associated myopericarditis. This case aims to raise awareness within the medical community about the cardiac effects of infection.
View Article and Find Full Text PDFJ Community Hosp Intern Med Perspect
November 2024
Department of Nursing, Karnali Academy of Health Science, Jumla, Nepal.
Infectious aortitis is an uncommon but potentially fatal condition that can lead to aortic dissection or rupture. We describe a case of a 69-year-old female who developed a Stanford type B aortic dissection, presumptively caused by Salmonella, which was successfully managed with thoracic endovascular aneurysm repair (TEVAR) and long-term antibiotics. A literature review of 17 reported cases from 2000 to 2024 of aortic dissection secondary to infectious aortitis was conducted.
View Article and Find Full Text PDFGut Microbes
December 2025
Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
, non-typhoidal spp., and enteropathogenic/enterohemorrhagic (EPEC/EHEC) are leading causes of food-borne illness worldwide. has been used to model EPEC and EHEC infection in mice.
View Article and Find Full Text PDFis a common pathogen that causes foodborne illness worldwide. There is limited evidence describing the treatment of gastrointestinal non-typhoidal (NTS). Clinicians are inclined to treat these infections with antibiotics, but the use of antibiotics may paradoxically worsen gastrointestinal symptoms and prolong bacterial stool shedding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!