This study extended the association between hookworm transmission in KwaZulu-Natal and the sandy coastal plain by investigating the parasite's occurrence in isolated areas of sandy soils further inland. A school-based prevalence survey was carried out in selected inland sandy areas and in surrounding areas dominated by clay soils within a narrow altitudinal range of between 500 and 700 m to reduce the effect of altitude on climate-related factors (rainfall and temperature). Sandy areas situated on the coastal plain were included in the analysis for comparative purposes. Soil samples (0-50 mm depth) were collected from each locality to assess their nematode loadings and to analyse selected physical and chemical properties. Significant differences were found between the moderate prevalence of hookworm infection among children living in inland areas with sandy soils (17.3%) and the low prevalence in surrounding non-sandy areas (5.3%, P < 0.001), and between infection among children living in all inland areas (9.3%) and the high prevalence on the coastal plain (62.5%, P < 0.001). Amounts of fine and medium sand were highest in both the coastal plain soils and in inland sandy areas and these fractions showed a significant positive correlation with hookworm prevalence and nematode loadings. Clay, coarse sand and organic matter contents were highest in surrounding non-sandy soils and showed a significant negative correlation with the nematode variables. No statistically significant correlations were found with soil pH at study localities. We conclude that properties of inland sandy soils, particularly particle size distribution, correlate well with hookworm prevalence and nematode loadings and therefore provide a more suitable habitat for nematodes than surrounding non-sandy areas. These results suggest that particle size distribution of sand fractions, organic matter and clay content in the soil influence the survival of hookworm larvae and hence the parasite's transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3156.2004.01216.x | DOI Listing |
Adv Biotechnol (Singap)
November 2024
Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
Hydraulic redistribution (HR) is a critical ecological process whereby plant roots transfer water from wetter to drier soil layers, significantly impacting soil moisture dynamics and plant water and nutrient uptake. Yet a comprehensive understanding of the mechanism triggering HR and its influencing factors remains elusive. Here, we conducted a systematic meta-analysis to discuss the influence of soil conditions and plant species characteristics on HR occurrence.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.
This study investigates the mechanical and microstructural properties of loose sandy soil stabilized with alkali-activated Ground Granulated Blast Furnace Slag (GGBFS). To examine the effects of varying GGBFS contents, curing times, and confining pressures on mechanical behavior, undrained triaxial and unconfined compressive strength (UCS) tests were conducted. Microstructural analyses using FE-SEM, EDX, and FTIR were performed to elucidate the nature and development of cementation.
View Article and Find Full Text PDFSci Rep
January 2025
School of Environmental Health, Institute of Public Health, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
The objective of this study is to enhance the capacity of struvite-phosphate forming reactor utilized in the production of phosphorus fertilizer from wastewater collected from mobile toilets, characterized by phosphorus (P) concentrations of 5.0 ± 1.1 g/l.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Geotechnical Engineering, Faculty of Civil Engineering, Tishreen University, Latakia, Syria.
This study investigates the performance of a skirt sand pile (SSP) system beneath a circular shallow footing using three-dimensional finite element analysis calibrated against a large-scale experimental setup. The SSP, measuring 8.00 m in length and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!