Transplantation of neural stem cells into explants of rat inner ear.

Acta Otolaryngol Suppl

Department of Otolaryngology--Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Published: March 2004

Damage and loss of hair cells in the inner ear is the most frequent cause of hearing loss and balance disorders. Mammalian hair cells do not regenerate in the conventional ways. To regenerate the hair cell in the mammalian inner ear we transplanted neural stem cells into explants of rat inner ear. The stem cells integrated successfully into the sensory epithelium of the vestibular organs, but not into the organ of Corti. This method is useful to investigate efficient ways to transplant stem cells into the inner ear.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03655230310016717DOI Listing

Publication Analysis

Top Keywords

inner ear
20
stem cells
16
neural stem
8
cells explants
8
explants rat
8
rat inner
8
hair cells
8
cells inner
8
cells
6
inner
5

Similar Publications

Unlabelled: The article is devoted to the problem of the rehabilitation stage of cochlear implantation in patients with inner ear abnormalities. It provides a detailed analysis of the audiological characteristics of such patients and draws conclusions about approaches to interpreting diagnostic data and speech processors fitting.

Material And Methods: The track records of 80 patients with abnormalities of the inner ear development were retrospectively studied, of which 10 had abnormal structure of the auditory nerve.

View Article and Find Full Text PDF

The NC_000006.12: g.34887814C>G variant in TAF11 was identified as a potential functional variant in a Chinese pedigree including two non-syndromic cleft lip only (NSCLO) cases.

View Article and Find Full Text PDF

The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.

View Article and Find Full Text PDF

Noise exposure is one of the most common causes of sensorineural hearing loss. Although many studies considered inflammation to be a major contributor to noise-induced hearing loss, the process of cochlear inflammation is still unclear. Studies have found that activation of the NF-κB signaling pathway results in the accumulation of macrophages in the inner ear plays an important role in hair cell damage.

View Article and Find Full Text PDF

Background: Meniere's disease (MD) is a disabling disease of the inner ear, having a substantial effect on a patient's quality of life. While various postulations regarding its aetiology exists, due to the difficulty with accessing inner ear tissue, there have been limited histological studies in patients with active MD.

Methods: Tissue was collected during labyrinthectomy from 8 patients with intractable MD who had failed medical therapy (22 samples), and 9 patients undergoing translabyrinthine resection of vestibular schwannoma (19 samples).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!