Evaluation of an instrumented glove for hand-movement acquisition.

J Rehabil Res Dev

RTR Research Centre in Rehabilitation Bioengineering, INAIL Prosthetic Centre, Viareggio, LU, Italy.

Published: May 2004

Quantitative assessment of digit range of motion (ROM) is often needed for monitoring effectiveness of rehabilitative treatments and assessing patients' functional impairment. The objective of this research was to investigate the feasibility of using the Humanware Humanglove, a 20-position sensors glove, to measure fingers' ROM, with particular regard to measurement repeatability. With this aim, we performed a series of tests on six normal subjects. Data analysis was based on statistical parameters and on the intraclass correlation coefficient (ICC). Sources of errors that could affect measurement repeatability were also analyzed. The results demonstrate that, in principle, the glove could be used as goniometric device. The main advantage yielded by its use is reduction in the time needed to perform the whole measurement process, while maintaining process repeatability comparable to that achieved by traditional means of assessment. It also allows for dynamic and simultaneous recording of hand-joint movements. Future work will investigate accuracy of measurements.

Download full-text PDF

Source

Publication Analysis

Top Keywords

measurement repeatability
8
evaluation instrumented
4
instrumented glove
4
glove hand-movement
4
hand-movement acquisition
4
acquisition quantitative
4
quantitative assessment
4
assessment digit
4
digit range
4
range motion
4

Similar Publications

Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.

View Article and Find Full Text PDF

Purpose: To assess the repeatability of lipid layer thickness (LLT) measurement using the LipiView® interferometer after daily disposable contact lens (CL) wear and correlation with ocular comfort in soft contact lens wearers.

Methods: A prospective study was conducted over two consecutive months, wherein CL wearers (n = 20) wore either Somofilcon A or Verofilcon A daily disposable CLs in a crossover design, switching lenses after 1 month. The pre-corneal tear film LLT was measured at the end of each month after CLs had been worn for at least 6 h.

View Article and Find Full Text PDF

Functionalized polymer membrane electrodes based multichannel sensor is used as an electronic tongue to monitor the drinking water (DW) quality simply by measuring the surface electric potential with respect to Ag/AgCl reference electrode in 1 mM aqueous KCl. Changes of minute concentration of dissolved minerals greatly affected the surface potential of the sensor. The three-channel sensor device (electronic tongue) is made by using three different functionalized polymer membrane electrodes, namely, phosphorylated hexadecyl trimethyl ammonium chloride modified polyvinyl alcohol-polyacrylic acid membrane; phosphorylated and crosslinked polyvinyl--ethylene membrane; phosphorylated and crosslinked polyvinyl alcohol membrane, as working electrodes and a Ag/AgCl reference electrode.

View Article and Find Full Text PDF

Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study.

J Neuroeng Rehabil

January 2025

Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 12, Floor 4, 41346, Gothenburg, Sweden.

Background: Myoelectric pattern recognition (MPR) combines multiple surface electromyography channels with a machine learning algorithm to decode motor intention with an aim to enhance upper limb function after stroke. This study aims to determine the feasibility and preliminary effectiveness of a novel intervention combining MPR, virtual reality (VR), and serious gaming to improve upper limb function in people with chronic stroke.

Methods: In this single case experimental A-B-A design study, six individuals with chronic stroke and moderate to severe upper limb impairment completed 18, 2 h sessions, 3 times a week.

View Article and Find Full Text PDF

Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.

Z Med Phys

January 2025

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.

Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.

Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!