Reduction of cortical myoclonus-related epileptic activity following slow-frequency rTMS.

Neuroreport

Dipartimento di Neuroscienze, Sezione Neurologia, Università di Siena, Policlinico Le Scotte, Viale Bracci I-53100, Italy.

Published: February 2004

In a drug-resistant epilepsy patient with continuous forearm/hand positive myoclonia due to a focal cortical dysplasia of the right motor cortex, cortical jerk-related and electromyographic activity were recorded for 15 min before and after 1 Hz rTMS (15 min, 10% below the resting excitability threshold) of the right motor cortex. A stable negative cortical spike, time-locked with contralateral muscle jerks (60 > 100 microV), was detected only at perirolandic electrodes (maximal amplitudes: block 1 = 21.3 microV, block 2 = 22 microV, block 3 = 25.9 microV). After rTMS, only 20 muscle jerks accomplished the criterion of > 100 microV; blind back-averaging of these disclosed a topographically similar cortical spike, but with amplitude reduced by at least 50% (11.2 microV). This represents in vivo evidence of the possibility to selectively modulate the activity of an epileptic focus by intervening with local low-frequency rTMS.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-200402090-00016DOI Listing

Publication Analysis

Top Keywords

motor cortex
8
cortical spike
8
muscle jerks
8
100 microv
8
microv block
8
microv
6
reduction cortical
4
cortical myoclonus-related
4
myoclonus-related epileptic
4
epileptic activity
4

Similar Publications

Background/objectives: Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks the function of presynaptic D2 receptors on cholinergic interneurons, leading to the release of acetylcholine (ACh), which is hydrolyzed by the enzyme acetylcholinesterase (AChE).

View Article and Find Full Text PDF

Long-term training enables professional athletes to develop concentrated and efficient neural network organizations for specific tasks. This study used functional near-infrared spectroscopy to investigate task performance, brain functional characteristics, and their relationships in footballers during sport-specific motor-cognitive processes. Twenty-four footballers (athlete group, with 18 remaining of good signal quality) and 20 non-footballers (control group, with 16 remaining) completed four tasks: a single task (trigger buttons corresponding to the appearance direction of teammates with kicking actions), an N-back direction task, a dual task, and an N-back digit task.

View Article and Find Full Text PDF

Structural-functional connectivity decoupling in multiscale brain networks in Parkinson's disease.

BMC Neurosci

December 2024

The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.

Background: Parkinson's disease (PD) is a progressive neurodegenerative disease associated with functional and structural alterations beyond the nigrostriatal dopamine projection. However, the structural-functional (SC-FC) coupling changes in combination with subcortical regions at the network level are rarely investigated in PD.

Methods: SC-FC coupling networks were systematically constructed using the structural connectivity obtained by diffusion tensor imaging and the functional connectivity obtained by resting-state functional magnetic resonance imaging in 53 PD and 72 age- and sex-matched healthy controls (HCs).

View Article and Find Full Text PDF

Introduction: Prior researches have reported abnormal changes of thalamus in patients with subcortical ischemic vascular disease (SIVD), which was usually analyzed as a whole. However, it was currently unclear whether the structure, function and connectivity of thalamic subregions were differentially affected by this disease and affected different cognitive functions.

Methods: This study recruited 30 SIVD patients with cognitive impairment (SIVD-CI), 30 SIVD patients with cognitive unimpaired (SIVD-CU) and 32 normal controls.

View Article and Find Full Text PDF

Introduction: Subthalamic nucleus deep brain stimulation (STN DBS) improves motor symptoms of Parkinson's disease (PD), but its effect on motivation is controversial. Apathy, the lack of motivation, commonly occurs in PD and is often exacerbated after surgery and its concomitant levodopa reduction. Apathy and reward processing are associated with the ventromedial prefrontal cortex (vmPFC), which standard targeting strategies avoid by targeting the dorsolateral STN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!