Effects of endogenous adenosine and adenosine receptor agonists on hypoxia-induced myocardial stunning in Guinea-pig atria and papillary muscles.

J Cardiovasc Pharmacol

Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cathays Park, Cardiff, UK.

Published: March 2004

The effects of endogenous adenosine and adenosine receptor agonists were examined on hypoxia-induced myocardial stunning of guinea-pig isolated paced left atria and papillary muscles. Hypoxia (30 minutes) reduced developed tension and increased diastolic tension (contracture) of left atria (41.8 +/- 11.5%) and papillary muscles (17.7 +/- 6.2%). Developed tension recovered to 80.8 +/- 3.15 and 77.2 +/- 5.3% 15 minutes after reoxygenation (stunning). Recovery of left atria was unaffected by adenosine deaminase (1 IU mL) but was depressed in papillary muscles (15 minutes, 48.6 +/- 4.3%) and contracture (46.1 +/- 7.5%) increased. Endogenous adenosine therefore protects from ventricular but not atrial stunning. Adenosine receptor agonists were introduced at 10 minutes into hypoxia. CPA (A1 selective, 3 x 10 M) impaired left atrial recovery (5 minutes, 38.1 +/- 5.0%), through direct negative inotropy, but did not affect papillary muscles. CGS21680 (A2A selective, 3 x 10 M) did not affect recovery. APNEA (A1/A3 receptor agonist, 10 M), increased recovery rate of left atria. Improved rate and extent of recovery of papillary muscles by APNEA (15 minutes, 94.8 +/- 3.1%) was prevented by the A3 receptor antagonist, MRS-1220 (10 M). IB-MECA (A3 selective, 3 x 10 M) increased atrial recovery rate but not the maximum developed tension reached in either tissue. However, when added at reoxygenation, IB-MECA caused complete recovery of both tissues, in the absence or presence of adenosine deaminase. Thus, A3 receptor stimulation reverses myocardial stunning of isolated atria and papillary muscles.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005344-200403000-00006DOI Listing

Publication Analysis

Top Keywords

papillary muscles
28
left atria
16
endogenous adenosine
12
adenosine receptor
12
receptor agonists
12
myocardial stunning
12
atria papillary
12
developed tension
12
effects endogenous
8
adenosine
8

Similar Publications

Computational modeling of cardiac hemodynamics including chordae tendineae, papillaries, and valves dynamics.

Comput Biol Med

January 2025

LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy. Electronic address:

In the context of dynamic image-based computational fluid dynamics (DIB-CFD) modeling of cardiac system, the role of sub-valvular apparatus (chordae tendineae and papillary muscles) and the effects of different mitral valve (MV) opening/closure dynamics, have not been systemically determined. To provide a partial filling of this gap, in this study we performed DIB-CFD numerical experiments in the left ventricle, left atrium and aortic root, with the aim of highlighting the influence on the numerical results of two specific modeling scenarios: (i) the presence of the sub-valvular apparatus, consisting of chordae tendineae and papillary muscles; (ii) different MV dynamics models accounting for different use of leaflet reconstruction from imaging. This is performed for one healthy subject and one patient with mitral valve regurgitation.

View Article and Find Full Text PDF

Background: Papillary muscles are structures integrated into the mitral valve apparatus, having both electrical and mechanical roles. The importance of the papillary muscles (PM) is mainly related to cardiac arrhythmias and mitral regurgitation. The aim of this review is to offer an overview of the anatomy and physiology of the papillary muscles, along with their involvement in cardiovascular pathologies, including arrhythmia development in various conditions and their contribution to secondary mitral regurgitation.

View Article and Find Full Text PDF

African swine fever (ASF) is considered as one of the most threatening diseases for the pig farming industry all over the world. Due to the lack of an effective vaccine, organized farms and backyard rearing must strictly enforce control measures in order to combat the disease. The present report describes the ASF epidemic in a piggery in Uttar Pradesh state, India.

View Article and Find Full Text PDF

Background: Secondary mitral regurgitation (SMR) is a condition affecting the left ventricle (LV) rather than the mitral valve (MV). If the MV remains structurally unchanged, enlargement of the LV or impairment of the papillary muscles can occur. Several mechanical interventions are available to dictate the resolution of MR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!