Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration.

J Leukoc Biol

Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.

Published: July 2004

The chemokine dose and the time period during which the chemotactic gradient is established determine the number of leukocytes that infiltrate inflamed tissues. At suboptimal chemokine concentrations, neutrophils may require a priming agent or a second stimulus for full activation. An interesting mode of cooperative action to reach maximal migration is synergy between chemokines. This was first observed between the plasma CC chemokine regakine-1 and the tissue CXC chemokine ligand interleukin-8 (IL-8/CXCL8) in neutrophil chemotaxis. Addition of antibodies against IL-8 or regakine-1 in the Boyden microchamber assay abrogated this synergy. Other CC chemokines, such as CC chemokine ligand-2 monocyte chemotactic protein-1 (MCP-1/CCL2), MCP-2 (CCL8), and MCP-3 (CCL7) as well as the CXC chemokine receptor-4 (CXCR4) agonist stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12), also dose-dependently enhanced neutrophil chemotaxis toward a suboptimal concentration of IL-8. These chemokines synergized equally well with the anaphylatoxin C5a in neutrophil chemotaxis. Alternatively, IL-8 and C5a did not synergize with an inactive precursor form of CXCL7, connective tissue-activating peptide-III/CXCL7, or the chemoattractant neutrophil-activating peptide-2/CXCL7. In the chemotaxis assay under agarose, MCP-3 dose-dependently increased the migration distance of neutrophils toward IL-8. In addition, the combination of IL-8 and MCP-3 resulted in enhanced neutrophil shape change. AMD3100, a specific CXCR4 inhibitor, reduced the synergistic effect between SDF-1alpha and IL-8 significantly. SDF-1alpha, but not MCP-1, synergized with IL-8 in chemotaxis with CXCR1-transfected, CXCR4-positive Jurkat cells. Thus, proinflammatory chemokines (IL-8, MCP-1), coinduced during infection in the tissue, synergize with each other or with constitutive chemokines (regakine-1, SDF-1alpha) to enhance the inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.1003479DOI Listing

Publication Analysis

Top Keywords

neutrophil chemotaxis
12
synergy chemokines
8
cxc chemokine
8
il-8
8
enhanced neutrophil
8
chemokine
6
neutrophil
5
chemokines
5
chemotaxis
5
synergy proinflammatory
4

Similar Publications

Background: Sepsis is an infection-related systemic inflammation with high mortality rates. Activation of formyl peptide receptor 1 (FPR1) in immune cells can promote their chemotaxis and inflammatory response, which imbalances immune response during the process of sepsis. FPR1 blockade did diminish systemic inflammatory response during bacterial infection.

View Article and Find Full Text PDF

Monocytes serve as Shiga toxin carriers during the development of hemolytic uremic syndrome.

Cell Mol Biol Lett

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.

Shiga toxin (Stx)-induced hemolytic uremic syndrome (HUS) poses a life-threatening complication for which a definitive treatment remains elusive. To exert its cytotoxic effect on renal cells, Stx must be delivered from the infected intestines to the kidney. However, the mechanism underlying Stx delivery remains unclear.

View Article and Find Full Text PDF

Platelet FcRγ inhibits tumor metastasis by preventing the colonization of circulating tumor cells.

Eur J Pharmacol

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China. Electronic address:

Fc receptor γ subunit (FcRγ) activation plays a crucial role in cancer carcinogenesis. Here, we aimed to uncover the impact of FcRγ on circulating tumor cells (CTC) colonization and the underlying mechanism. FcRγ deficient (FcRγ) mice were used to investigate the functional effects of FcRγ in cancer metastasis, and the results demonstrated that FcRγ deficiency significantly promotes metastasis.

View Article and Find Full Text PDF

Characteristics of neutrophil chemotaxis in bottlenose dolphin (Tursiops truncatus).

Vet Immunol Immunopathol

January 2025

Laboratory of Preventive Veterinary Medicine and Animal Health, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa-ken 252-0880, Japan. Electronic address:

Cetaceans have adapted to aquatic life by evolving various anatomic and physiologic traits, but biological defense mechanisms specific to aquatic mammals that protect against pathogenic microorganisms in the aquatic environment have not been elucidated. In this study, we investigated the migration of polymorphonuclear leukocytes in bottlenose dolphins in response to various chemotactic factors and compared the migration response with that of terrestrial animals such as cows and humans to characterize biological defense mechanisms unique to cetaceans. Bottlenose dolphin neutrophils showed strong chemotactic activity toward zymosan-activated serum and recombinant human interleukin-8 but no chemotaxis toward N-formyl-methionyl-leucyl-phenylalanine or leukotriene B at any concentration examined.

View Article and Find Full Text PDF

Integrated analysis of genetic, proteinic, and metabolomic alterations in Behcet's disease.

Sci Rep

January 2025

Department of Ophthalmology, Bishan hospital of Chongqing medical university, Bishan Hospital of Chongqing, Chongqing, China, 402760.

Numerous studies have investigated the alterations of genes, proteins, and metabolites in Behcet's disease (BD). By far, little is known about the depiction of panoramic changes underlying this disease. This study purposed to assess the consistently dysregulated genes, proteins, and metabolites in BD across publications using the vote-counting approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!