The vitamin K-dependent gamma-carboxylation system is responsible for post-translational modification of vitamin K-dependent proteins, converting them to Gla-containing proteins. The system consists of integral membrane proteins located in the endoplasmic reticulum membrane and includes the gamma-carboxylase and the warfarin-sensitive enzyme vitamin K(1) 2,3-epoxide reductase (VKOR), which provides gamma-carboxylase with reduced vitamin K(1) cofactor. In this work, an in vitro gamma-carboxylation system was designed and used to understand how VKOR and gamma-carboxylase work together as a system and to identify factors that can regulate the activity of the system. Results are presented that demonstrate that the endoplasmic reticulum chaperone protein calumenin is associated with gamma-carboxylase and inhibits its activity. Silencing of the calumenin gene with siRNA resulted in a 5-fold increase in gamma-carboxylase activity. The results provide the first identification of a protein that can regulate the activity of the gamma-carboxylation system. The propeptides of vitamin K-dependent proteins stimulate gamma-carboxylase activity. Here we show that the factor X and prothrombin propeptides do not increase reduced vitamin K(1) cofactor production by VKOR in the system where VKOR is the rate-limiting step for gamma-carboxylation. These findings put calumenin in a central position concerning regulation of gamma-carboxylation of vitamin K-dependent proteins. Reduced vitamin K(1) cofactor transfer between VKOR and gamma-carboxylase is shown to be significantly impaired in the in vitro gamma-carboxylation system prepared from warfarin-resistant rats. Furthermore, the sequence of the 18-kDa subunit 1 of the VKOR enzyme complex was found to be identical in the two rat strains. This finding supports the notion that different forms of genetic warfarin resistance exist.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M401645200DOI Listing

Publication Analysis

Top Keywords

vitamin k-dependent
20
gamma-carboxylation system
20
k-dependent proteins
12
vkor gamma-carboxylase
12
reduced vitamin
12
vitamin cofactor
12
system
10
vitamin
9
k-dependent gamma-carboxylation
8
warfarin-resistant rats
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!