Solution structures of a cyanobacterial metallochaperone: insight into an atypical copper-binding motif.

J Biol Chem

Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.

Published: June 2004

The Atx1 copper metallochaperone from Synechocystis PCC 6803, ScAtx1, interacts with two P(1)-type copper ATPases to supply copper proteins within intracellular compartments, avoiding ATPases for other metals en route. Here we report NMR-derived solution structures for ScAtx1. The monomeric apo form has a betaalphabetabetaalpha fold with backbone motions largely restricted to loop 1 containing Cys-12 and Cys-15. The tumbling rate of Cu(I)ScAtx1 (0.1-0.8 mm) implies dimers. Experimental restraints are satisfied by symmetrical dimers with Cys-12 or His-61, but not Cys-15, invading the copper site of the opposing subunit. A full sequence of copper ligands from the cell surface to thylakoid compartments is proposed, considering in vitro homodimer liganding to mimic in vivo liganding in ScAtx1-ATPase heterodimers. A monomeric high resolution structure for Cu(I)ScAtx1, with Cys-12, Cys-15, and His-61 as ligands, is calculated without violations despite the rotational correlation time. (2)J(NH) couplings in the imidazole ring of His-61 establish coordination of N(epsilon2) to copper. His-61 is analogous to Lys-65 in eukaryotic metallochaperones, stabilizing Cu(I)S(2) complexes but by binding Cu(I) rather than compensating charge. Cys-Cys-His ligand sets are an emergent theme in some copper metallochaperones, although not in related Atx1, CopZ, or Hah1. Surface charge (Glu-13) close to the metal-binding site of ScAtx1 is likely to support interaction with complementary surfaces of copper-transporting ATPases (PacS-Arg-11 and CtaA-Lys-14) but to discourage interaction with zinc ATPase ZiaA and so inhibit aberrant formation of copper-ZiaA complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M402005200DOI Listing

Publication Analysis

Top Keywords

solution structures
8
cys-12 cys-15
8
copper
7
structures cyanobacterial
4
cyanobacterial metallochaperone
4
metallochaperone insight
4
insight atypical
4
atypical copper-binding
4
copper-binding motif
4
motif atx1
4

Similar Publications

The Canadian Genomics Research and Development Initiative for Antimicrobial Resistance (GRDI-AMR) uses a genomics-based approach to understand how health care, food production and the environment contribute to the development of antimicrobial resistance. Integrating genomics contextual data streams across the One Health continuum is challenging because of the diversity in data scope, content and structure. To better enable data harmonization for analyses, a contextual data standard was developed.

View Article and Find Full Text PDF

Highly salt-resistant and efficient dynamic Janus absorber based on thermo-responsive hydroxypropyl cellulose.

Mater Horiz

January 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.

Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.

View Article and Find Full Text PDF

Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.

View Article and Find Full Text PDF

In this report the photophysical property of newly synthesized fluorescein based derivative 2-(5-((2,4-dichlorophenyl)diazenyl)-6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid has studied by spectroscopic and theoretical that is by Density Functional Theory technique. The structural and functional group of the synthesized molecule was confirmed by nuclear magnetic resonance and fourier transform infrared spectroscopy technique, and from the result so far obtained has been confirmed that molecule has a stable structure and confirmed the presence the functional groups present in the sample. The optical properties of the molecule are studied using the spectroscopic technique and it has revealed the solute-solvent interaction behaviour of the molecule and it has been observed that the bathochromic shift was of about 5 nm, from the fluorescence measurement it has revealed that the emission has been observed at green region and from the power spectra it has been confirmed the same.

View Article and Find Full Text PDF

Effective team science requires procedural harmonization for rigor and reproducibility. Multicenter studies across experimental modalities (domains) can help accelerate translation. The Translational Outcomes Project in NeuroTrauma (TOP-NT) is a pre-clinical traumatic brain injury (TBI) consortium charged with establishing and validating noninvasive TBI assessment tools through team science.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!