A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active and specific recruitment of a soluble cargo protein for endoplasmic reticulum exit in the absence of functional COPII component Sec24p. | LitMetric

Exit of proteins from the yeast endoplasmic reticulum (ER) is thought to occur in vesicles coated by four proteins, Sec13p, Sec31p, Sec23p and Sec24p, which assemble at ER exit sites to form the COPII coat. Sec13p may serve a structural function, whereas Sec24p has been suggested to operate in selection of cargo proteins into COPII vesicles. We showed recently that the soluble glycoprotein Hsp150 exited the ER in the absence of Sec13p function. Here we show that its ER exit did not require functional Sec24p. Hsp150 was secreted to the medium in a sec24-1 mutant at restrictive temperature 37 degrees C, while cell wall invertase and vacuolar carboxypeptidase Y remained in the ER. The determinant guiding Hsp150 to this transport route was mapped to the C-terminal domain of 114 amino acids by deletion analysis, and by an HRP fusion protein-based EM technology adapted here for yeast. This domain actively mediated ER exit of Sec24p-dependent invertase in the absence of Sec24p function. However, the domain was entirely dispensable for ER exit when Sec24p was functional. The Sec24p homolog Sfb2p was shown not to compensate for nonfunctional Sec24p in ER exit of Hsp150. Our data show that a soluble cargo protein, Hsp150, is selected actively and specifically to budding sites lacking normal Sec24p by a signature residing in its C-terminal domain.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.01019DOI Listing

Publication Analysis

Top Keywords

sec24p
9
soluble cargo
8
cargo protein
8
endoplasmic reticulum
8
sec24p exit
8
functional sec24p
8
c-terminal domain
8
exit
7
hsp150
5
active specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!