Cs(2)Pd(3)(P(2)O(7))(2) (1) and Cs(2)Pd(3)(As(2)O(7))(2) (2) have been synthesized by molten flux reactions and characterized by single-crystal X-ray diffraction. The structure of 1 consists of discrete Pd(II)O(4) squares which are linked by P(2)O(7) groups via corner-sharing to generate a 3D framework containing 12-ring channels in which Cs(+) cations are located. Compound 2 adopts a 2D layer structure with the interlayer space filled with Cs(+) cations. Within a layer there are PdO(4) squares and As(2)O(7) groups fused together via corner-sharing. Adjacent layers are stacked such that strings of Pd atoms are formed. The PdO(4) squares show eclipsed and staggered stacks with alternate short and long Pd...Pd distances. The two compounds adopt considerably different structures although they have the same general formula: Cs(2)Pd(3)(X(2)O(7))(2). Compound 2 is the first palladium arsenate reported. Crystal data for 1: orthorhombic, space group Cmc2(1) (No. 36), a = 7.6061(4) A, b = 14.2820(7) A, c = 14.1840(7) A, and Z = 4. Crystal data for 2: tetragonal, space group P4/n (No. 85), a = 16.251(1) A, c = 5.9681(5) A, and Z = 4.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic035438pDOI Listing

Publication Analysis

Top Keywords

cs2pd3p2o72 cs2pd3as2o72
8
palladium arsenate
8
cs+ cations
8
pdo4 squares
8
crystal data
8
space group
8
palladium
4
cs2pd3as2o72 palladium
4
palladium phosphate
4
phosphate tunnel
4

Similar Publications

Cs(2)Pd(3)(P(2)O(7))(2) (1) and Cs(2)Pd(3)(As(2)O(7))(2) (2) have been synthesized by molten flux reactions and characterized by single-crystal X-ray diffraction. The structure of 1 consists of discrete Pd(II)O(4) squares which are linked by P(2)O(7) groups via corner-sharing to generate a 3D framework containing 12-ring channels in which Cs(+) cations are located. Compound 2 adopts a 2D layer structure with the interlayer space filled with Cs(+) cations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!