Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have developed an approach to isolate mechanisms controlling mobility and speciation of As in soil-water systems. The approach uses a combination of isotopic exchange and chromatographic/mass spectrometric As speciation techniques. We used this approach to identify mechanisms responsible for changes in the concentration of soluble As in two contaminated soils (Eaglehawk and Tavistock) subjected to different redox conditions and microbial activity. A high proportion of the total As in both soils was present in a nonlabile form. Incubation of the soils under anaerobic conditions led to changes in the concentration of soluble As in each soil but did not change the As speciation or the proportion of total As in labile forms in the soils. Hence, a decrease in soluble As in the Eaglehawk soil was the result of an Eh-induced pH decrease, enhancing the solid-phase sorption of As(V). An increase in soluble As in the Tavistock soil was due to an Eh-induced pH increase, decreasing solid-phase sorption of As(V). Incubation of the soils under aerobic conditions with microbial activity stimulated by addition of glucose resulted in no change in the solution concentration or speciation of As in the Eaglehawk soil, but led to a large increase in the concentration of soluble As in the Tavistock soil. This increase was due to conversion of exchangeable forms of As(V) into less strongly sorbed As(III) species. Incubation under anaerobic conditions in the presence of glucose resulted in a large increase in the concentration of soluble As in both soils; however, different mechanisms were found to be responsible for the increase in each soil. In the Eaglehawk soil higher concentrations of As were again due to conversion of exchangeable forms of As(V) into less strongly sorbed As(III) species. In contrast in the Tavistock soil, the increased As in solution was the result of release of As(V) from the large reservoir of nonlabile soil As.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es034931x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!