This study obtained measurements of the spatiotemporal gait parameters of healthy young adult Kuwaiti subjects from both genders and compared the data to those collected in a similar study performed in Sweden. Thirty healthy subjects volunteered to participate in the study (which included being asked to walk at their "free," "slow," and "fast" self-selected speeds). We collected the spatiotemporal gait data using an automated system. Descriptive statistics were calculated for each variable measured at each walking condition. The data were then compared to those from the Swedish study. The results indicate several significant differences between Kuwaiti and Swedish subjects in their manner of walking. These results suggest a need to include data from subjects with diverse cultural backgrounds when a database on normal gait is developed or a need to limit the results of the database to a specified ethnic population.

Download full-text PDF

Source
http://dx.doi.org/10.1682/jrrd.2003.07.0361DOI Listing

Publication Analysis

Top Keywords

gait parameters
8
spatiotemporal gait
8
data
5
subjects
5
basic gait
4
parameters comparison
4
comparison reference
4
reference data
4
data normal
4
normal subjects
4

Similar Publications

Purpose: To systematically review the evidence investigating the implementation of cardiorespiratory (CR) training in adults following a stroke and to understand how interventions are prescribed to address cardiorespiratory fitness (CRF).

Methods: Medline, CINAHL, EMBASE, EMCARE, Scopus, PEDro and ProQuest were searched from inception until January 2024. Inclusion criteria were studies that included adults following a stroke, investigated CR training interventions and used standardised CRF assessments.

View Article and Find Full Text PDF

Introduction: The three-dimensional evaluation of patients in the gait laboratory is a diagnostic method that is gaining ground in various orthopedic pathologies and, in the case of ankle fractures, can more accurately detail the degree of joint limitation.

Objective: To present the importance of laboratory gait studies in the postoperative period of ankle fractures associated with syndesmosis ligament injuries, increasing the arsenal for assessing whether the surgical approach and outcome were satisfactory.

Methods: Case series of 13 patients who underwent surgical treatment for ankle fractures associated with syndesmosis injuries, evaluated postoperatively in the gait clinic using the BTS GAITLAB hardware program.

View Article and Find Full Text PDF

Reliability of running gait variability measures calculated from inertial measurement units.

J Biomech

January 2025

Sport and Physical Activity Research Centre, Sheffield Hallam University, Olympic Legacy Park, 2 Old Hall Rd, Sheffield S9 3TY, United Kingdom. Electronic address:

Changes to the variability within biomechanical signals may reflect a change in the health of the human system. However, for running gait variability measures calculated from wearable device data, it is unknown whether a between-day difference reflects a shift in system dynamics reflective of a change in human health or is a result of poor between-day reliability of the measurement device or the biomechanical signal. This study investigated the reliability of stride time and sacral acceleration variability measures calculated from inertial measurement units (IMUs).

View Article and Find Full Text PDF

While the importance of the upper and lower limbs in locomotion is well understood, the kinematics of the trunk during walking remains largely unexplored. Two decades ago, a casual observation was reported indicating spine lengthening in a small sample of mostly children during walking, but this observation was never replicated. Objectives: This study aims to verify the preliminary observation that spine lengthening occurs during walking and to explore changes in spine kinematics across three different age groups.

View Article and Find Full Text PDF

A rapidly growing body of experimental evidence in the literature shows that the effects of humans interacting with vibrating structures, other humans, and their surrounding environment can be critical for reliable estimation of structural vibrations. The Interaction-based Vibration Serviceability Assessment framework (I-VSA) was proposed by the authors in 2017 to address this, taking into account human-structure dynamic interactions (HSI) to simulate the structural vibrations experienced by each occupant/pedestrian. The I-VSA method, however, had limited provisions to simulate simultaneously multiple modes of structure in HSI, to simulate human-human and human-environment interactions, and the movement pattern of the occupants/pedestrians.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!