Granulocyte colony-stimulating factor (G-CSF) is considered to improve host defense during infection, via increased recruitment of and enhanced performance of neutrophils and subsequent inhibition of potentially harmful proinflammatory mediators. The present study sought to determine the role of endogenous G-CSF in host defense against pneumococcal pneumonia. Patients with unilateral community-acquired pneumonia demonstrated elevated concentrations of G-CSF in bronchoalveolar lavage fluid obtained from the infected, but not from the contralateral, site. Treatment of mice with pneumococcal pneumonia with an anti-G-CSF antibody reduced neutrophil counts in lung tissue and diminished CD11b expression on pulmonary neutrophils but increased the lung concentrations of tumor necrosis factor- alpha, interleukin-1 beta, and cytokine-induced neutrophil chemoattractant. Treatment with anti-G-CSF did not influence the outgrowth of pneumococci in lungs, the dissemination of the infection, or survival in murine pneumonia. During pneumococcal pneumonia, G-CSF is produced locally at the site of the infection, where it exerts both pro- and anti-inflammatory effects.

Download full-text PDF

Source
http://dx.doi.org/10.1086/382962DOI Listing

Publication Analysis

Top Keywords

pneumococcal pneumonia
16
granulocyte colony-stimulating
8
colony-stimulating factor
8
host defense
8
pneumonia
6
activation neutrophils
4
neutrophils inhibition
4
inhibition proinflammatory
4
proinflammatory cytokine
4
cytokine response
4

Similar Publications

Purpose: In the setting of an established childhood pneumococcal vaccination programme with immediate initiation and treatment of antiretroviral therapy (ART) for people living with HIV (PLWH), the risk of adult pneumococcal community-acquired pneumonia (CAP) is not recently described. We aimed to investigate CAP incidence, recurrence, mortality, risk factors and microbiology before and during the COVID-19 pandemic.

Participants: Adults aged ≥18 years were enrolled in three South African provinces from March 2019 to October 2021, with a brief halt during the initial COVID-19 lockdown.

View Article and Find Full Text PDF

Background: Streptococcus pneumoniae is an important cause of pneumonia, sepsis, and meningitis, which are leading causes of child mortality. Pneumococcal conjugate vaccines (PCVs) protect against disease and nasopharyngeal colonization with vaccine serotypes, reducing transmission to and among unvaccinated individuals. Mozambique introduced 10-valent PCV (PCV10) in 2013.

View Article and Find Full Text PDF

Hospital burden of pneumococcal disease in Spain (2016-2022): A retrospective study.

Hum Vaccin Immunother

December 2025

Medical Specialities and Public Health Department, Area of Preventive Medicine and Public Health, Rey Juan Carlos University, Alcorcón, Madrid, Spain.

Pneumococcal disease is a leading cause of morbidity and mortality worldwide. From 2016 to 2022, 358,603 hospitalized patients were identified as having pneumococcal disease. The overall annual hospitalization rate was 108.

View Article and Find Full Text PDF

Simplified process for preparing native and depolymerized capsular polysaccharides of Streptococcus pneumoniae.

Carbohydr Polym

March 2025

Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:

Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.

View Article and Find Full Text PDF

A comprehensive analysis of serotype-specific invasive capacity, clinical presentations, and mortality trends of invasive pneumococcal disease.

Vaccine

January 2025

Department of Pediatrics, Section of Infectious Diseases and Global Health, Yale University School of Medicine, New Haven, CT, United States; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States; Yale Institute for Global Health, Yale University, New Haven, CT, United States; Yale Center for Infection and Immunity, Yale University, New Haven, CT, United States. Electronic address:

Background: Pneumococcal conjugate vaccines (PCV) reduced invasive disease, but the overall prevalence of pneumococcal nasopharyngeal colonization among children has not changed significantly. Our knowledge of which serotypes, once colonized, hold a higher likelihood to cause invasive disease is limited.

Methods: Serotype-specific invasive capacity (IC) of Streptococcus pneumoniae was estimated using an enhanced population-based invasive pneumococcal disease (IPD) surveillance in children <7 years of age in Massachusetts and surveillance of nasopharyngeal (NP) colonization in selected Massachusetts communities in corresponding respiratory seasons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!