A system for observing blue light of Cherenkov radiation was constructed using a Co-60 gamma-ray irradiation unit. However, there was some doubt that the observed light was not Cherenkov light, but scintillation. Therefore, the radiation from water was compared with that from a scintillator. The difference between both luminosities was examined using photographs taken in a dark irradiation room with mirrors and a camera. The radiation from the scintillator was much stronger than that from water. The differences between luminosities of the light radiated in the beam direction, at right angles to the beam and in the reverse beam direction were examined for both radiations. The luminosity from water showed very definite anisotropy, while that from the scintillator was almost isotropic. Furthermore, the light radiated in the beam direction from water was the strongest, and the strengths of the light radiated in the three directions from the scintillator were almost equivalent to each other. It was confirmed that the radiation from water irradiated by Co-60 gamma-rays was indeed Cherenkov light. The anisotropy of the radiated Cherenkov light and the isotropy of the scintillation were clearly observed in the photographs.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!