A link between control of respiration and glucose repression in yeast is reported. The HAP4 gene was overexpressed in a Delta mig1 deletion background, generating a mutant in which respiratory function is stimulated and glucose repression is diminished. Although this combination does not result in derepression of genes encoding proteins involved in respiratory function, it nevertheless generates resistance against 2-deoxyglucose and hence contributes to more derepressed growth characteristics. Unexpectedly, overexpression of HAP4 in the Delta mig1 deletion strain causes strong repression of several target genes of the Mig1p repressor. Repression is not restricted to glucose growth conditions and does not require the glucose repressors Mig2p or Hxk2p. It was observed that expression of the SUC2 gene is transiently repressed after glucose is added to respiratory-growing Delta mig1 cells. Additional overexpression of HAP4 prevents release from this novel repressed state. The data presented show that respiratory function controls transcription of genes required for the metabolism of alternative sugars. This respiratory feedback control is suggested to regulate the feed into glycolysis in derepressed conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.26742-0DOI Listing

Publication Analysis

Top Keywords

overexpression hap4
12
delta mig1
12
respiratory function
12
glucose repression
8
mig1 deletion
8
respiratory
5
glucose
5
hap4 glucose-derepressed
4
glucose-derepressed yeast
4
yeast cells
4

Similar Publications

TaJUB1 is phosphorylated by TaMPK4 to enhance TaXIP3 transcription and reduce Cd accumulation.

J Hazard Mater

January 2025

School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China. Electronic address:

Cadmium (Cd) has been recognized as a prevalent toxic pollutant that poses a significant threat to human health through the food chain. To mitigate this risk, reducing Cd accumulation in crops is an effective strategy. In this work, we observed that the overexpression of TaXIP3 resulted in a substantial reduction in Cd accumulation in wheat.

View Article and Find Full Text PDF

Active DNA Demethylation Mediated by Regulates Growth, Development, and Blast () Resistance in Rice.

J Agric Food Chem

November 2024

Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.

Article Synopsis
  • OsGADD45a1 in rice has a newly identified homologue, OsGADD45a2, which differs only by three amino acids, but its role in DNA demethylation remains unclear.
  • Mutants lacking OsGADD45a2 showed stunted growth, shorter panicle lengths, fewer grains, and lower seed setting rates compared to wild-type plants, indicating its importance for growth and resistance to rice blast fungus.
  • Analysis of the 3000 Rice Genomes Project revealed four major haplotypes associated with plant height variations, with overexpression lines showing reduced methylation levels in protein-coding genes and increased gene expression related to plant development and disease resistance.
View Article and Find Full Text PDF

OsGRF6-OsYUCCA1/OsWRKY82 Signaling Cascade Upgrade Grain Yield and Bacterial Blight Resistance in Rice.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

As a major crop in the world, the sustainable development of rice is often severely restricted by bacterial blight. Breeding crops with resistance is an efficient way to control bacterial blight. However, enhancing resistance often incurs a fitness penalty, making it challenging to simultaneously increase bacterial blight resistance and yield potential.

View Article and Find Full Text PDF

Multiple transcription factors in the budding yeast are required for the switch from fermentative growth to respiratory growth. The Hap2/3/4/5 complex is a transcriptional activator that binds to CCAAT sequence elements in the promoters of many genes involved in the tricarboxylic acid cycle and oxidative phosphorylation and activates gene expression. Adr1 and Cat8 are required to activate the expression of genes involved in the glyoxylate cycle, gluconeogenesis, and utilization of nonfermentable carbon sources.

View Article and Find Full Text PDF

Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!