Purpose: The aim of this study is to compare glucose metabolism and hypoxia in four different tumor types using positron emission tomography (PET). (18)F-labeled fluorodeoxyglucose (FDG) evaluates energy metabolism, whereas the uptake of (18)F-labeled fluoromisonidazole (FMISO) is proportional to tissue hypoxia. Although acute hypoxia results in accelerated glycolysis, cellular metabolism is slowed in chronic hypoxia, prompting us to look for discordance between FMISO and FDG uptake.
Experimental Design: Forty-nine patients (26 with head and neck cancer, 11 with soft tissue sarcoma, 7 with breast cancer, and 5 with glioblastoma multiforme) who had both FMISO and FDG PET scans as part of research protocols through February 2003 were included in this study. The maximum standardized uptake value was used to depict FDG uptake, and hypoxic volume and maximum tissue:blood ratio were used to quantify hypoxia. Pixel-by-pixel correlation of radiotracer uptake was performed on coregistered images for each corresponding tumor plane.
Results: Hypoxia was detected in all four patient groups. The mean correlation coefficients between FMISO and FDG uptake were 0.62 for head and neck cancer, 0.47 for breast cancer, 0.38 for glioblastoma multiforme, and 0.32 for soft tissue sarcoma. The correlation between the overall tumor maximum standardized uptake value for FDG and hypoxic volume was small (Spearman r = 0.24), with highly significant differences among the different tumor types (P < 0.005).
Conclusions: Hypoxia is a general factor affecting glucose metabolism; however, some hypoxic tumors can have modest glucose metabolism, whereas some highly metabolic tumors are not hypoxic, showing discordance in tracer uptake that can be tumor type specific.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.ccr-0688-3 | DOI Listing |
Diabetol Metab Syndr
January 2025
Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China.
Background: The triglyceride glucose-body mass index (TyG-BMI) is considered to be a reliable surrogate marker of insulin resistance (IR). However, limited evidence exists regarding its association with the severity of coronary artery disease (CAD), particularly in hypertensive patients with different glucose metabolic states, including those with H-type hypertension. This study aimed to investigate the relationship between TyG-BMI and CAD severity across different glucose metabolism conditions.
View Article and Find Full Text PDFLab Anim Res
January 2025
Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, The 1st Veterinary R&D Building Rm 301, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea.
Background: Metabolic syndrome (MetS) refers to a group of risk factors that cause health problems, such as obesity, diabetes, dyslipidemia, and hyperglycemia. MetS is characterized by insulin resistance, which leads to abnormal insulin sensitivity. Cirsium japonicum var.
View Article and Find Full Text PDFBMC Nutr
January 2025
Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
Background: Gestational Diabetes Mellitus (GDM) prevalence is rising worldwide, but optimal dietary strategies remain unclear. The eMOM pilot RCT compared a plant-protein rich Healthy Nordic Diet (HND) and a moderately carbohydrate restricted diet (MCRD) and their potential effects on time in glucose target range (≤ 7.8 mmol/L, %TIR), and on newborn body composition.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by insulin resistance, leading to elevated blood sugar levels. Exogenous insulin can counteract the diminished response to insulin and effectively controlling blood glucose levels, thereby minimizing diabetes-related complications. However, given the injectable nature of exogenous insulin, apprehensions regarding its safety and the difficulties associated with its administration have hindered its widespread and prompt utilization.
View Article and Find Full Text PDFCrit Care
January 2025
Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!