Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Because increased fibroblast growth factor-1 (FGF-1) and FGF receptor (FGFR) expression correlate with the development of accelerated graft arteriosclerosis in transplanted human hearts, this study sought to determine whether local gene transfer of soluble FGFR-1, capable of binding both FGF-1 and FGF-2, could blunt the development of accelerated graft arteriosclerosis in the rat aortic transplant model.
Methods And Results: A construct encoding the FGFR-1 ectodomain, capable of neutralizing FGF-2 action, was expressed in rat aortic allografts, using adenoviral gene transfer at the time of transplantation. Neointima formation was inhibited in aortic allografts transduced with soluble FGFR-1, compared with allografts transduced with Null virus.
Conclusions: FGFs play a causal role in the development of accelerated graft arteriosclerosis in the rat aortic transplant model. Targeted interruption of FGF function could potentially reduce neointima formation in patients with heart and kidney transplants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.ATV.0000128201.65443.ea | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!