A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of accelerated graft arteriosclerosis by gene transfer of soluble fibroblast growth factor receptor-1 in rat aortic transplants. | LitMetric

Objective: Because increased fibroblast growth factor-1 (FGF-1) and FGF receptor (FGFR) expression correlate with the development of accelerated graft arteriosclerosis in transplanted human hearts, this study sought to determine whether local gene transfer of soluble FGFR-1, capable of binding both FGF-1 and FGF-2, could blunt the development of accelerated graft arteriosclerosis in the rat aortic transplant model.

Methods And Results: A construct encoding the FGFR-1 ectodomain, capable of neutralizing FGF-2 action, was expressed in rat aortic allografts, using adenoviral gene transfer at the time of transplantation. Neointima formation was inhibited in aortic allografts transduced with soluble FGFR-1, compared with allografts transduced with Null virus.

Conclusions: FGFs play a causal role in the development of accelerated graft arteriosclerosis in the rat aortic transplant model. Targeted interruption of FGF function could potentially reduce neointima formation in patients with heart and kidney transplants.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.ATV.0000128201.65443.eaDOI Listing

Publication Analysis

Top Keywords

accelerated graft
16
graft arteriosclerosis
16
rat aortic
16
gene transfer
12
development accelerated
12
transfer soluble
8
fibroblast growth
8
soluble fgfr-1
8
arteriosclerosis rat
8
aortic transplant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!