Ruthenium (II) nitrofurylsemicarbazone complexes: new DNA binding agents.

Eur J Med Chem

Departamento de Química Orgánica, Facultad de Química-Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.

Published: April 2004

Complexes of the type [Ru(II)Cl(2)(DMSO)(2)L], where L are 5-nitrofurylsemicarbazone derivatives, were prepared in an effort to combine the potential anti-tumor activity of the metal and the free ligands. The new complexes are excellent DNA binding agents for calf thymus DNA. So, their in vitro anti-tumor activity was tested in cellular models and the complexes were found to be non-cytotoxic on the tumor cell lines assayed, neither in aerobic conditions nor in the bio-reductive assay performed. Redox behavior, lipophilicity and stability were studied in order to explain the lack of cellular cytotoxic effects. The complexes resulted 10-100 times more hydrophilic than the parent ligands thus the bio-activity of these compounds would be compromised by their inadequate lipophilic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2004.01.002DOI Listing

Publication Analysis

Top Keywords

dna binding
8
binding agents
8
anti-tumor activity
8
complexes
5
ruthenium nitrofurylsemicarbazone
4
nitrofurylsemicarbazone complexes
4
complexes dna
4
agents complexes
4
complexes type
4
type [ruiicl2dmso2l]
4

Similar Publications

The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.

View Article and Find Full Text PDF

Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.

View Article and Find Full Text PDF

The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).

View Article and Find Full Text PDF

PPARγ is the pharmacological target of thiazolidinediones (TZDs), potent insulin sensitizers that prevent metabolic disease morbidity but are accompanied by side effects such as weight gain, in part due to non-physiological transcriptional agonism. Using high throughput genome engineering, we targeted nonsense mutations to every exon of PPARG, finding an ATG in Exon 2 (chr3:12381414, CCDS2609 c.A403) that functions as an alternative translational start site.

View Article and Find Full Text PDF

ERBB4 selectively amplifies TGF-β pro-metastatic responses.

Cell Rep

January 2025

MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China. Electronic address:

Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!