Background: Detection of herpes viruses can be significantly improved by PCR. The development of real-time PCR, which has overcome several limitations of conventional PCR, improved the prospects for implementation of PCR-based assays in diagnostic laboratory.

Objectives: To compare the diagnostic performance of an automated sample extraction procedure in combination with an internally controlled real-time PCR assay for detection of herpes simplex virus (HSV) and varicella-zoster virus (VZV) to conventional shell vial culture.

Study Design: One hundred eighty-two consecutive specimens from patients suspected of HSV or VZV infection were examined by internally controlled PCR and shell vial culture. An internal control consisting of phocine herpes virus was processed along with the specimens during the entire procedure and permitted to monitor extraction and amplification efficiency, including inhibition.

Results: A total of 48 (26.4%) specimens were positive for HSV or VZV by culture, and 77 (42.3%) by real-time PCR. Thus, overall sensitivity increased by 60.4%. All culture-positive specimens were detected and typed correctly by PCR, except for a single specimen that contained PCR inhibitors. Specifically, the real-time PCR assay increased the detection rate for HSV-1 and HSV-2 by 43.9% and 62.5%, respectively. In PCR-positive specimens, lower levels of viral DNA were found in culture-negative than in culture-positive specimens. The increase of HSV detection rates by PCR varied with the origin of specimen and was particularly significant for skin specimens (7/14 versus 3/14 detected by culture) and bronchoalveolar lavages (8/8 versus 1/8). In addition, real-time PCR significantly increased the detection rate for VZV.

Conclusions: Compared to shell vial culture, our real-time PCR assay demonstrated a superior sensitivity and an added value of using internal control for checking the quality of examination of each specimen. These results provide a solid basis for implementation of real-time PCR in the routine diagnosis of HSV and VZV infections in various clinical specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcv.2003.08.006DOI Listing

Publication Analysis

Top Keywords

real-time pcr
32
pcr assay
16
pcr
14
internally controlled
12
shell vial
12
hsv vzv
12
real-time
8
controlled real-time
8
herpes simplex
8
varicella-zoster virus
8

Similar Publications

Background: This study aimed to investigate miRNAs and upstream regulatory transcription factors involved in schizophrenia (SZ) pathogenesis.

Methods: Differential expression of miRNAs and genes in SZ patients was investigated utilizing the gene expression omnibus dataset, gene ontology annotations, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Real-time quantitative polymerase chain reaction experiments were conducted to validate the predictive screening of regulatory genes in peripheral blood samples from 20 SZ patients and 20 healthy controls.

View Article and Find Full Text PDF

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by the JC polyomavirus (JCPyV). Based on the clinical criteria, PML is diagnosed via polymerase chain reaction (PCR) detection of JCPyV DNA in cerebrospinal fluid (CSF) in combination with neurological and imaging findings. Although the utility of CSF JCPyV testing using ultrasensitive PCR assays has been suggested, its potential requires further evaluation.

View Article and Find Full Text PDF

Circulating MicroRNAs Related to Arterial Stiffness in Adults with HIV Infection.

Viruses

December 2024

1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.

People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.

View Article and Find Full Text PDF

This study evaluated influenza A virus (IAV) detection and genetic diversity over time, specifically at the human-swine interface in breeding and nursery farms. Active surveillance was performed monthly in five swine farms in the Midwest United States targeting the employees, the prewean piglets at sow farms, and the same cohort of piglets in downstream nurseries. In addition, information was collected at enrollment for each employee and farm to assess production management practices, IAV vaccination status, diagnostic procedures, and biosecurity.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants has heightened concerns about vaccine efficacy, posing challenges in controlling the spread of COVID-19. As part of the COVID-19 Vaccine Effectiveness and Variants (COVVAR) study in Uganda, this study aimed to genotype and characterize SARS-CoV-2 variants in patients with COVID-19-like symptoms who tested positive on a real-time PCR. Amplicon deep sequencing was performed on 163 oropharyngeal/nasopharyngeal swabs collected from symptomatic patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!