A simple and advantageous method for the determination of titanium using graphite furnace atomic absorption spectrometry with slurry sampling has been developed. Titanium is one of the refractory elements that form thermally stable carbides in the graphite tube, which leads to severe memory effects. Trifluoromethane (Freon-23) was applied in the purge gas during the atomization step or alternatively just prior to the atomization to successfully eliminate the problems of carbide formation and increase the lifetime of the furnace tube which could be used for more than 600 heating cycles. A flow rate of 40 mL min(-1) (5% of Freon in argon) was used to obtain symmetrical peaks with no tailing. However, when the gas flow rate was too high (250 mL min(-1)) the peak-tailing and memory effects reappeared. Ti was determined in various materials covering a wide range of concentrations, from 2.8 microg g(-1) to 12% (m/m) Ti. The accuracy of the method was confirmed by analyzing certified reference materials (CRMs) or by comparing the results with those obtained using inductively coupled plasma-atomic emission spectrometry (ICP-AES) after decomposition of the samples. The materials analyzed were soil, plant, human hair, coal, urban particulate matters, toothpaste, and powdered paint.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-004-2588-zDOI Listing

Publication Analysis

Top Keywords

determination titanium
8
furnace atomic
8
atomic absorption
8
absorption spectrometry
8
simple advantageous
8
advantageous method
8
memory effects
8
flow rate
8
freon chf3-assisted
4
chf3-assisted atomization
4

Similar Publications

Safe and Sustainable by Design (SSbD) is a new regulatory concept guiding chemical and material innovation. The European Commission has recommended a two-stage SSbD framework and plan to revise it based on stakeholder feedback. The framework involves establishing key (re)design SSbD principles and assessment of the final innovation, however the applicability of the framework to advanced materials remains to be addressed.

View Article and Find Full Text PDF

This study explores the thermal conductivity and viscosity of water-based nanofluids containing silicon dioxide, graphene oxide, titanium dioxide, and their hybrids across various concentrations (0 to 1 vol%) and temperatures (30 to 60 °C). The nanofluids, characterized using multiple methods, exhibited increased viscosity and thermal conductivity compared to water, with hybrid nanofluids showing superior performance. Graphene oxide nanofluids displayed the highest thermal conductivity and viscosity ratios, with increases of 52% and 177% at 60 °C and 30 °C, respectively, for a concentration of 1 vol% compared to base fluid.

View Article and Find Full Text PDF

Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the osseointegration properties of titanium bone implants coated with carob-mediated calcium hydroxide nanoparticles biomechanically, radiographically, and histologically on rabbit tibias.

Material And Methods: Forty coated and forty uncoated titanium alloy bone implants were inserted into 20 New Zealand rabbits; each tibia received 2 implants. The rabbits were sacrificed after 4 or 8 weeks, and samples were retrieved for biomechanical evaluation through removal torque test to assess the bond between implant and bone, radiographic evaluation through microcomputed tomography analysis to compare the bone-to-implant contact percentage and bone volume of the peri-implant area, scanning electron microscopic and histologic evaluation through hematoxylin and eosin stain.

View Article and Find Full Text PDF

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!