Objective: Impact of air blast overpressure waves (OPW), or shock wave, with the body wall or body armor produces two types of energy waves: high-frequency low-amplitude stress waves and long-duration low-frequency share waves. These types of energy waves are characterized by different mechanisms of primary tissue injury that mostly affect lung. Systemic inflammation and resultant acute respiratory distress syndrome are known major secondary causative agents of delayed multiple organ failure and subsequent death after OPW exposure. However, association of each pattern of the blast OPW-produced energy waves with postexposure inflammatory events has not yet been delineated. The objectives of the present research were a) establishment of a rat model for assessment of the inflammatory response following lung injury produced by exposure to medium-amplitude (approximately 120 kPa) low-frequency (260+/-5 Hz) OPWs; and b) assessment of the dynamics of alteration in polymorphonuclear leukocyte counts and expression of CD11b adhesion molecules on the surface of polymorphonuclear leukocytes and status of iron-transferrin complexes in peripheral blood after OPW exposure.
Design: This study focused on the OPW effects at different time periods, using a sequential approach to postexposure events. Lung injury in rat was induced by OPW generated in a laboratory shock tube. Animals were exposed to OPW (at peak overpressure of 118+/-7 kPa) that produced "moderate" lung injury.
Setting: Military research institute.
Subjects: Twenty-seven CVF Sprague-Dawley rats were subjected to OPW exposures, and 17 sham-treated animals were used as control.
Interventions: Lung tissue and blood samples were collected at 1, 3, 6, 12, and 24 hrs following OPW exposures and compared with samples collected from nonexposed animals.
Measurements And Main Results: OPW-induced lung injury caused a 2.7-fold increase in the number of circulatory polymorphonuclear leukocytes as early as 1 hr postexposure, which is indicative of mobilization of the pool of marginated polymorphonuclear leukocytes into the free circulation. Polymorphonuclear leukocyte counts increased through the following 3- and 6-hr periods, when they were, respectively, 5-fold and 3.5-fold higher than in controls. These effects were accompanied by a pronounced expression of CD11b in polymorphonuclear leukocytes and tissue sequestration of blood iron-transferrin complexes during the entire 24-hr period of observations. The increase in circulatory polymorphonuclear leukocytes was accompanied by a decrease in iron-transferrin complex concentrations that apparently reflected implication of blood plasma iron in the inflammatory cell response to OPW-induced injury.
Conclusions: The observed dynamics in polymorphonuclear leukocyte alterations in peripheral blood after OPW exposure were similar to those found recently in clinical observations of nonpenetrating injury and in animal models of infectious insults. Therefore, our data suggest that the main pattern of proinflammatory alterations in the rat model of lung injury induced by exposure to long-duration shock wave is similar to patterns that are characteristic of major trauma. The data further suggest that the expression of polymorphonuclear leukocyte CD11b and the response of iron-transferrin complex can be considered as potential surrogate markers in blood for systemic alterations following OPW-induced injury and, therefore, warrant further investigation in a human pilot study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.ccm.0000120051.79520.b6 | DOI Listing |
FASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders /Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
Children with bronchopulmonary dysplasia (BPD) often exhibit severe respiratory problems and significant pulmonary dysfunction during school age and adulthood. Exercise tests show a decline in cardiopulmonary function and physical performance in children with BPD, who also have a higher incidence of pulmonary hypertension. These children generally perform poorly in terms of intelligence, language, and motor development.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.
View Article and Find Full Text PDFInflammation
January 2025
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
The incidence of blast injuries has been rising globally, particularly affecting the lungs due to their vulnerability. Primary blast lung injury (PBLI) is associated with high morbidity and mortality rates, while early diagnostic methods are limited. With advancements in medical technology, and portable handheld ultrasound devices, the efficacy of ultrasound in detecting occult lung injuries early remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!