Chronic renal failure (CRF) is associated with oxidative stress that promotes production of reactive oxygen species. L-Carnitine is a cofactor required for transport of long-chain fatty acids into the mitochondrial matrix. Recent research has shown that some clinical conditions (i.e., anorexia, chronic fatigue, coronary heart disease, diphtheria, hypoglycemia, and male infertility) benefit from exogenous supplementation of L-carnitine. The aim of this study was to examine the role of L-carnitine in protecting the aorta, heart, corpus cavernosum, and kidney tissues against oxidative damage in a rat model of CRF. Male Wistar albino rats were randomly assigned to either the CRF group or the sham-operated control group, which had received saline or L-carnitine (500 mg/kg, i.p.) for 4 weeks. CRF was evaluated by BUN and serum creatinine measurements. Aorta and corporeal tissues were used for contractility studies or stored along with heart and kidney tissues for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels. Plasma MDA, GSH levels and erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were also studied. In the CRF group, the contraction and the relaxation of aorta and corpus cavernosum samples decreased significantly compared with controls and were partially reversed by L-carnitine treatment. In the CRF group, there were significant increases in tissue MDA with marked reductions in GSH levels in all tissues and plasma compared with controls. In the plasma SOD, CAT and GSH-Px activities were also reduced. All these effects were reversed by L-carnitine as well. The increase in MDA level and the concomitant decrease in GSH level of tissues and plasma and also suppression of the antioxidant enzyme activities in plasma demonstrate that oxidative mechanisms are involved in CRF-induced tissue damage. L-carnitine, possibly via its free radical scavenging and antioxidant properties, ameliorates oxidative organ injury and CRF-induced dysfunction of the aorta and corpus cavernosum. These results suggest that L-carnitine supplementation may have some benefit in CRF patients.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005344-200405000-00013DOI Listing

Publication Analysis

Top Keywords

corpus cavernosum
12
crf group
12
gsh levels
12
l-carnitine
9
ameliorates oxidative
8
oxidative damage
8
chronic renal
8
renal failure
8
kidney tissues
8
gsh-px activities
8

Similar Publications

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Background: Cavernous nerve injury-induced erectile dysfunction (CNI-ED) is a common complication following radical prostatectomy and severely affects patients' quality of life. The mitochondrial impairment in corpus cavernosum smooth muscle cells (CCSMCs) may be an important pathological mechanism of CNI-ED. Previous studies have shown that transplantation of human adipose derived stem cells (ADSC) can alleviate CNI-ED in a rat model.

View Article and Find Full Text PDF

Angiosarcoma of the penis is an exceptionally rare mesenchymal tumor, with only about 30 cases documented in the literature. Because of its rarity and the often nonspecific clinical presentation, histopathological examination plays a critical role in accurate diagnosis. Angiosarcoma of the penis typically arises in the corpus cavernosum but has also been reported in the glans and urethra, often presenting with metastases.

View Article and Find Full Text PDF

Background: Pelvic trauma can have long-lasting debilitating effects, including severe erectile dysfunction (ED) in men. While there are effective treatments for ED, these treat the symptoms not the cause. Those who suffer from an acute traumatic injury to the neurovascular supply of penis, may benefit from regenerative therapy.

View Article and Find Full Text PDF

Adrenergic stimulation induces contractions in the corpus cavernosum smooth muscle (CCSM) that are important in maintaining penile flaccidity. The aim of this study was to investigate the role of K7 channels in regulating contractions and their underlying Ca signals in mouse CCSM. Quantitative PCR revealed transcriptional expression of KCNQ1 and KCNQ3-5 genes in whole CCSM, with KCNQ5 as the most highly transcribed K7 encoding gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!