Lung function changes in workers exposed to cobalt compounds: a 13-year follow-up.

Am J Respir Crit Care Med

Industrial Toxicology and Occupational Medicine Unit, School of Public Health, Université catholique de Louvain, Brussels, Belgium.

Published: July 2004

The objective of the study was to examine the influence of cobalt exposure on lung function changes in workers from a cobalt-producing plant in a health monitoring program implemented between 1988 and 2001. A total of 122 male workers with at least 4 (median = 6) lung function tests (FEV(1) and FVC) during the follow-up period were assessed longitudinally. Cobalt exposure significantly decreased over the follow-up period, as reflected by the measurements in air and urine. The possible association of spirometric changes with cobalt exposure was examined by a random coefficients model, taking into account other potential influential variables, such as smoking, age, previous respiratory illness, exposure to other lung toxicants, or the presence of glutamate in position 69 in the HLA-DP beta-chain, an HLA polymorphism possibly associated with hard-metal-induced lung diseases. The main finding of the follow-up study was that cobalt exposure contributed to a decline in FEV(1) over time, and only in association with smoking. No influence of glutamate in position 69 in the HLA-DP beta-chain polymorphism was detected. Although the amplitude of the additional FEV(1) decrement associated with smoking exposure was relatively small (< 20%) compared with the expected decline in a non-cobalt-exposed smoker, the results indicate that further efforts to reduce cobalt exposure and to encourage workers to quit smoking are still warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.200310-1357OCDOI Listing

Publication Analysis

Top Keywords

cobalt exposure
20
lung function
12
function changes
8
changes workers
8
exposure lung
8
follow-up period
8
glutamate position
8
position hla-dp
8
hla-dp beta-chain
8
exposure
7

Similar Publications

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Toxic Effects of Cobalt on Erythroid Progenitor Cells.

Chem Res Toxicol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs).

View Article and Find Full Text PDF

Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.

View Article and Find Full Text PDF

Innovative applications of cobalt tungstate nanoparticles (CoWO NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae).

View Article and Find Full Text PDF

Novel Co-MOF-doped gelatin/agar intelligent film for beef freshness visual tracking based on the structural change of ZIF-67 under ammonia etching effect.

Int J Biol Macromol

January 2025

Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi University for Nationalities, Nanning, Guangxi 530008, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

It is an important task to construct intelligent packaging for meat freshness monitoring with good color stability and indication function. Herein, cobalt-based metal-organic framework nanomaterials (Co-MOF, ZIF-67) with antimicrobial and ammonia-sensitive properties were successfully synthesized and added into gelatin/agar (GA) matrix to develop highly stable intelligent films (GA/ZIF67). The incorporation of ZIF-67 nanoparticles enhanced the hydrophobicity (water contact angle >90°) and UV-blocking properties (close to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!