The structures of the bacterial RNA polymerase holoenzyme have provided detailed information about the intersubunit interactions within the holoenzyme. Functional analysis indicates that one of these is critical in enabling the holoenzyme to recognize the major class of bacterial promoters. It has been suggested that this interaction, involving the flap domain of the beta subunit and conserved region 4 of the sigma subunit, is a potential target for regulation. Here we provide genetic and biochemical evidence that the sigma region 4/beta-flap interaction is targeted by the transcription factor AsiA. Specifically, we show that AsiA competes directly with the beta-flap for binding to sigma region 4, thereby inhibiting transcription initiation by disrupting the sigma region 4/beta-flap interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384785 | PMC |
http://dx.doi.org/10.1073/pnas.0400923101 | DOI Listing |
Nat Rev Gastroenterol Hepatol
January 2025
Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
In patients with disorders of gut-brain interaction (DGBI), overlapping non-gastrointestinal conditions such as fibromyalgia, headaches, gynaecological and urological conditions, sleep disturbances and fatigue are common, as is overlap among DGBI in different regions of the gastrointestinal tract. These overlaps strongly influence patient management and outcome. Shared pathophysiology could explain this scenario, but details are not fully understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316, Oslo, Norway.
In the subauroral zone at the boundary of the auroral oval in the evening and night hours during geomagnetic disturbances, a narrow (about 1°-2°) and extended structure (several hours in longitude) is formed. It is known as a polarization jet (PJ) or the subauroral ion drift (SAID). The PJ/SAID is a fast westward ion drift and is one of the main signatures of a geomagnetic disturbance in the subauroral ionosphere at the altitudes of the F-layer, when the geomagnetic AE index reaches more than 500 nT.
View Article and Find Full Text PDFFullerenes are statically pleasant species featuring symmetric cages, which can be modified upon reduction. Here, we theoretically account for the variation of 13C-NMR patterns in C60 and C70 upon six-fold reduction and the overall variation of the enabled shielding/deshielding regions induced by π and σ electrons according to different orientations of the external field and the related anisotropy. Our results show a significant modification of the chemical shift given by the main variation of the σ33 (or δ33) shielding component under the principal axis system (PAS) of the chemical shift anisotropy (CSA) at the representative carbon nucleus.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Genome-wide identification of binding profiles for DNA-binding proteins from the limited number of intracellular pathogens in infection studies is crucial for understanding virulence and cellular processes but remains challenging, as the current ChIP-exo is designed for high-input bacterial cells (>1010). Here, we developed an optimized ChIP-mini method, a low-input ChIP-exo utilizing a 5,000-fold reduced number of initial bacterial cells and an analysis pipeline, to identify genome-wide binding dynamics of DNA-binding proteins in host-infected pathogens. Applying ChIP-mini to intracellular Salmonella Typhimurium, we identified 642 and 1,837 binding sites of H-NS and RpoD, respectively, elucidating changes in their binding position and binding intensity during infection.
View Article and Find Full Text PDFSci Total Environ
January 2025
CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
Climate change affects groundwater availability and residence times, necessitating a thorough understanding of aquifer characteristics to define sustainable yields, particularly in regions where water is heavily exploited. This study focuses on the Volvic volcanic aquifer (Chaîne des Puys, France), where groundwater recharge has decreased due to climate change, raising concerns about water use sustainability. To address these challenges, this work proposes a multi-tracer approach, based on hydrogeological monitoring, including the estimation of groundwater ages, major elements chemistry and water stable isotopes to better characterise this resource decrease and more peculiarly its origin and its impact on the environment that has never been addressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!