Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384747 | PMC |
http://dx.doi.org/10.1073/pnas.0400961101 | DOI Listing |
Curr Diabetes Rev
January 2025
Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, India.
The connection between COVID-19 and DM unveils a multifaceted interplay that significantly impacts disease severity and management strategies. Initial studies reveal that people with DM had higher severity rates of COVID-19 due to the infection by SARS-CoV-2. The virus solely induces hyperglycemia and, at the same time, profoundly influences the immune and inflammatory reactions, increasing the rate of severe complications and death among diabetes patients.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
Although a substantial amount of research has been conducted to unravel the structural configurations of selenium under pressure, the exquisite sensitivity of selenium's p-orbital electrons to this external force, leading to a plethora of structural variations, leaves several intermediary phases still shrouded in mystery. We, herein, systematically identify the structural and electronic transformations of selenium under high pressure up to 300 GPa, employing crystal structure prediction in conjunction with first-principles calculations. Our results for the transition sequence (321 → 2/ → 3̄ → 3̄) of selenium are in good agreement with experimental ones.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, India.
Even with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' nonspecificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
To elucidate the process of adaptation, particularly the traits subject to natural selection and the molecular mechanisms underlying their natural variation, is one of the primary objectives of evolutionary biology. The uplifted landscape offers an excellent framework for understanding how organisms adapt to dramatic climatic gradients. To investigate the genetic basis of plant adaptation to the extremely high altitude, we first compared the genomic and phenotypic variations of two closely related Arabidopsis thaliana accessions from high altitude (Xizang, also known as "Tibet") and low altitude (Yunnan), respectively.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Urinary exosome metabolite analysis has demonstrated notable advantages in uncovering disease status, yet its potential in decoding the intricacies of clear cell renal cell carcinoma (ccRCC) remains untapped. To address this, a core-shell magnetic titanium organic framework was designed to capture urinary exosomes and assist laser desorption/ionization mass spectrometry (LDI MS) to decipher the exosomal metabolic profile of ccRCC, with high sensitivity, throughput, and speed. A total of 492 urinary exosome metabolite fingerprints (UEMFs) from 176 samples were extracted for exploring the differences between ccRCC and healthy individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!