The LOV2 domain of phototropin: a reversible photochromic switch.

J Am Chem Soc

Department of Biophysics, Faculty of Sciences, Vrije Universiteit, 1081HV Amsterdam, The Netherlands.

Published: April 2004

AI Article Synopsis

  • LOV domains are photoreceptor proteins that respond to blue light via a flavin chromophore, leading to a reaction that forms a stable covalent bond with a cysteine.
  • Ultrafast spectroscopy reveals that when the formed adduct absorbs near-UV light, the bond breaks, restoring the original blue-light-sensitive state within about 100 picoseconds.
  • This indicates that the LOV2 domain acts as a reversible photochromic switch, allowing it to be toggled between states using different light wavelengths.

Article Abstract

Light, oxygen, or voltage (LOV) domains constitute a new class of photoreceptor proteins that are sensitive to blue light through a noncovalently bound flavin chromophore. Blue-light absorption by the LOV2 domain initiates a photochemical reaction that results in formation of a long-lived covalent adduct between a cysteine and the flavin cofactor. We have applied ultrafast spectroscopy on the photoaccumulated covalent adduct state of LOV2 and find that, upon absorption of a near-UV photon by the adduct state, the covalent bond between the flavin and the cysteine is broken and the blue-light-sensitive ground state is regained on an ultrafast time scale of 100 ps. We thus demonstrate that the LOV2 domain is a reversible photochromic switch, which can be activated by blue light and deactivated by near-UV light.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja031840rDOI Listing

Publication Analysis

Top Keywords

lov2 domain
12
reversible photochromic
8
photochromic switch
8
blue light
8
covalent adduct
8
adduct state
8
lov2
4
domain phototropin
4
phototropin reversible
4
light
4

Similar Publications

Design and Use of AsLOV2-Based Optogenetic Tools for Actin Imaging.

Methods Mol Biol

December 2024

Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.

We present protocols for using an optogenetic tool called LILAC for actin imaging. LILAC is a light-controlled version of Lifeact that uses the Avena sativa LOV2 (AsLOV2) domain. By significantly reducing Lifeact's affinity for the cytoskeleton in the dark, LILAC reduces concentration-dependent negative side effects while enabling new image processing methods.

View Article and Find Full Text PDF

Modulating Optogenetic YAP In Vitro and In Vivo.

Methods Mol Biol

December 2024

Mechanobiology Institute, National University of Singapore, Singapore, Singapore.

YAP is a central regulator of the Hippo-YAP signaling axis, an evolutionarily conserved pathway that modulates organ growth and regeneration. Dysregulation of YAP signaling leads to uncontrolled proliferation, promoting epithelial-to-mesenchymal transition and invasion in cancer metastasis. Exogenous manipulation of YAP activity at the second-to-minute timescale is an important step in studying the signaling pathway.

View Article and Find Full Text PDF

The LOV2 domain is commonly harnessed as a source of light-based regulation in engineered optogenetic switches. In prior work, we used LOV2 to create a light-regulated Dihydrofolate Reductase (DHFR) enzyme and showed that structurally disperse mutations in DHFR were able to tune the allosteric response to light. However, it remained unclear how light allosterically activates DHFR, and how disperse mutations modulate the allosteric effect.

View Article and Find Full Text PDF
Article Synopsis
  • - The LOV2 domain is a blue light receptor that forms a stable adduct with flavin mononucleotide (FMN), a cofactor crucial for its function.
  • - Research shows that exchanging FMN with the analogue 5-deazaFMN leads to photochemical changes and the formation of a stable adduct, confirmed through NMR experiments.
  • - This system exhibits a reliable photocycle, making it a promising alternative to wild-type LOV2 for use in optogenetics, offering easy manipulation in biological applications.
View Article and Find Full Text PDF

Chimeric antigen receptor T cell therapies have achieved great success in eradicating some liquid tumors, whereas the preclinical results in treating solid tumors have proven less decisive. One of the principal challenges in solid tumor treatment is the physical barrier composed of a dense extracellular matrix, which prevents immune cells from penetrating the tissue to attack intratumoral cancer cells. Here, we improve immune cell infiltration into solid tumors by manipulating septin-7 functions in cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!