Light, oxygen, or voltage (LOV) domains constitute a new class of photoreceptor proteins that are sensitive to blue light through a noncovalently bound flavin chromophore. Blue-light absorption by the LOV2 domain initiates a photochemical reaction that results in formation of a long-lived covalent adduct between a cysteine and the flavin cofactor. We have applied ultrafast spectroscopy on the photoaccumulated covalent adduct state of LOV2 and find that, upon absorption of a near-UV photon by the adduct state, the covalent bond between the flavin and the cysteine is broken and the blue-light-sensitive ground state is regained on an ultrafast time scale of 100 ps. We thus demonstrate that the LOV2 domain is a reversible photochromic switch, which can be activated by blue light and deactivated by near-UV light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja031840r | DOI Listing |
Methods Mol Biol
December 2024
Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
We present protocols for using an optogenetic tool called LILAC for actin imaging. LILAC is a light-controlled version of Lifeact that uses the Avena sativa LOV2 (AsLOV2) domain. By significantly reducing Lifeact's affinity for the cytoskeleton in the dark, LILAC reduces concentration-dependent negative side effects while enabling new image processing methods.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
YAP is a central regulator of the Hippo-YAP signaling axis, an evolutionarily conserved pathway that modulates organ growth and regeneration. Dysregulation of YAP signaling leads to uncontrolled proliferation, promoting epithelial-to-mesenchymal transition and invasion in cancer metastasis. Exogenous manipulation of YAP activity at the second-to-minute timescale is an important step in studying the signaling pathway.
View Article and Find Full Text PDFThe LOV2 domain is commonly harnessed as a source of light-based regulation in engineered optogenetic switches. In prior work, we used LOV2 to create a light-regulated Dihydrofolate Reductase (DHFR) enzyme and showed that structurally disperse mutations in DHFR were able to tune the allosteric response to light. However, it remained unclear how light allosterically activates DHFR, and how disperse mutations modulate the allosteric effect.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
Proc Natl Acad Sci U S A
October 2024
Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033.
Chimeric antigen receptor T cell therapies have achieved great success in eradicating some liquid tumors, whereas the preclinical results in treating solid tumors have proven less decisive. One of the principal challenges in solid tumor treatment is the physical barrier composed of a dense extracellular matrix, which prevents immune cells from penetrating the tissue to attack intratumoral cancer cells. Here, we improve immune cell infiltration into solid tumors by manipulating septin-7 functions in cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!