A classical dogma of radiation biology asserts that all effects of radiation on cells are due to it's direct, immediate actions. But evidence accumulated over the last 50 years shows that radiation also has, indirect 'non-target' actions including 'bystander' effects in which effects of radiation on cells or media are transported to cells or tissues that were not 'hit' by the radiation, leading to changes in their function. This important but heretical recognition of radiation actions has been referred to, probably incorrectly, as a 'paradigm shift.' What these signals are and how they induce changes is not well understood. Also not clear is how, or if, bystander effects might affect risk estimates for exposure to low doses of radiation. These issues are reviewed and explored in this series of papers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1191/0960327104ht425oa | DOI Listing |
Mol Biol Rep
January 2025
Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India.
Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.
View Article and Find Full Text PDFRedox Rep
December 2025
Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
The standard therapy for locally unresectable advanced non-small cell lung cancer (NSCLC) is comprised of chemoradiotherapy (CRT) before immunotherapy (IO) consolidation. However, how to predict treatment outcomes and recognize patients that will benefit from IO remain unclear. This study aimed to identify prognostic biomarkers by integrating computed tomography (CT)-based radiomics and genomics.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, China.
It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana.
View Article and Find Full Text PDFCancer Manag Res
January 2025
Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
Purpose: To investigate the impact of Intensity-Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) on hippocampal radiation dosage and psychological status in patients newly diagnosed with nasopharyngeal carcinoma (NPC).
Patients And Methods: A retrospective analysis was conducted on 269 NPC patients who received initial treatment between January 2013 and April 2022. Patients were categorized into the IMRT group and the VMAT group based on the radiotherapy technique employed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!