Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0010-9452(08)70953-5 | DOI Listing |
J Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFNat Rev Neurosci
January 2025
Department of Psychiatry, University of Cambridge, Cambridge, UK.
Recent advances in structural MRI analytics now allow the network organization of individual brains to be comprehensively mapped through the use of the biologically principled metric of anatomical similarity. In this Review, we offer an overview of the measurement and meaning of structural MRI similarity, especially in relation to two key assumptions that often underlie its interpretation: (i) that MRI similarity can be representative of architectonic similarity between cortical areas and (ii) that similar areas are more likely to be axonally connected, as predicted by the homophily principle. We first introduce the historical roots and technical foundations of MRI similarity analysis and compare it with the distinct MRI techniques of structural covariance and tractography analysis.
View Article and Find Full Text PDFBrain Struct Funct
December 2024
Departments of Radiology, Neuroscience, and Biomedical Engineering, Washington University Medical School, St. Louis, MO, USA.
The first, introductory part of this paper presents an overview of the long quest for a universal map of the human cortex, useful as a standard reference for all remaining studies on this brain part. It is pointed out that such a map does still not exist, but that systematic comparison of some recently produced 3D maps may well be conducive toward this important goal. Hence, the second part of this article is devoted to a detailed comparison of two of such maps, the multimodal MRI-based parcellation of Glasser et al.
View Article and Find Full Text PDFLife Sci
December 2024
Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India. Electronic address:
As per the World Health Organization (WHO) estimation, Alzheimer's disease (AD) will affect 100 million population across the globe by 2050. AD is an incurable neurodegenerative disease that remains a mystery for neurologists owing to its complex pathophysiology. Currently, available therapeutic regimens will only cause symptomatic relief by improving the cognitive and behavioral functions of AD.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Institute for Hematopathology, Fangdieckstr, 75a, 22547 Hamburg, Germany.
Marfan syndrome (MFS) is a hereditary condition accompanied by disorders in the structural and regulatory properties of connective tissue, including elastic fibers, due to a mutation in the gene encodes for fibrillin-1 protein (FBN1 gene) and the synthesis of abnormal fibrillin-1 glycoprotein. Despite the high potential of mast cells (MCs) to remodel the extracellular matrix (ECM), their pathogenetic significance in MFS has not been considered yet. The group of patients with Marfan syndrome included two mothers and five children (three girls aged 4, 11, and 11 and two boys aged 12 and 13).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!