p63RhoGEF and GEFT are Rho-specific guanine nucleotide exchange factors encoded by the same gene.

Naunyn Schmiedebergs Arch Pharmacol

Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim, Universität Heidelberg, Maybachstrasse 14-16, 68169 Mannheim, Germany.

Published: May 2004

Activation of Rho GTPases, which play pivotal roles in diverse cellular functions, is catalysed by specific guanine nucleotide exchange factors (GEFs). We and others (Souchet et al. (2002)) independently cloned a human cDNA encoding a 580 aa protein (p63RhoGEF), which contains a tandem of Dbl homology and pleckstrin homology domains typical for RhoGEFs. In accordance with Souchet et al., recombinant p63RhoGEF interacted with and catalysed GDP/GTP exchange at RhoA, but not Rac1 or Cdc42. Recently, an N-terminally truncated form of p63RhoGEF, termed GEFT, was described as a Rac/Cdc42-specific GEF (Guo et al. 2003). As judged by RT-PCR with specific primers, we were able to detect mRNA variants encoding p63RhoGEF and GEFT within several tissues and cell lines. Apparently, they co-exist within one cell and are derived from the same gene. When expressed in human embryonic kidney cells, both p63RhoGEF and GEFT caused activation of RhoA, but not Rac1 or Cdc42, and induced serum response factor-mediated gene transcription, which was fully blunted by the Rho-inactivating C3 transferase. In line with these data, expression of either p63RhoGEF or GEFT in J82 human bladder carcinoma cells induced the formation of actin stress fibres. We therefore conclude that p63RhoGEF and GEFT are apparently isoforms derived from the same gene and that GEFT, similar to p63RhoGEF, activates RhoA in several cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-004-0926-5DOI Listing

Publication Analysis

Top Keywords

p63rhogef geft
20
p63rhogef
9
guanine nucleotide
8
nucleotide exchange
8
exchange factors
8
rhoa rac1
8
rac1 cdc42
8
derived gene
8
geft
6
geft rho-specific
4

Similar Publications

Kinetics of recruitment and allosteric activation of ARHGEF25 isoforms by the heterotrimeric G-protein Gαq.

Sci Rep

November 2016

Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands.

Rho GTPases are master regulators of the eukaryotic cytoskeleton. The activation of Rho GTPases is governed by Rho guanine nucleotide exchange factors (GEFs). Three RhoGEF isoforms are produced by the gene ARHGEF25; p63RhoGEF, GEFT and a recently discovered longer isoform of 619 amino acids (p63RhoGEF).

View Article and Find Full Text PDF

Cardiac remodeling, a hallmark of heart disease, is associated with intense auto- and paracrine signaling leading to cardiac fibrosis. We hypothesized that the specific mediator of Gq/11-dependent RhoA activation p63RhoGEF, which is expressed in cardiac fibroblasts, plays a role in the underlying processes. We could show that p63RhoGEF is up-regulated in mouse hearts subjected to transverse aortic constriction (TAC).

View Article and Find Full Text PDF

Signaling pathways that control rho kinase activity maintain the embryonic epicardial progenitor state.

J Biol Chem

April 2015

From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and

This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism.

View Article and Find Full Text PDF

Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

Sci Rep

February 2014

Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands.

The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm.

View Article and Find Full Text PDF

The 146-kDa Pasteurella multocida toxin (PMT) is the main virulence factor to induce P. multocida-associated progressive atrophic rhinitis in various animals. PMT leads to a destruction of nasal turbinate bones implicating an effect of the toxin on osteoblasts and/or osteoclasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!