A synthetic T cell immunogen (TCI) has been designed as a candidate DNA-based vaccine against Human immunodeficiency virus (HIV)-1 using cytotoxic T lymphocytes (CD8(+) CTL) and T-helper lymphocytes (CD4(+) Th) epitopes retrieved from the Los Alamos HIV Molecular Immunology Database. The protein 392 amino acids in length contains about eighty CTL-epitopes, many of which are overlapping and are totally restricted by ten different HLA class I molecules. To be able to detect CTL responses induced by a DNA vaccine in experimental animals, additional epitopes, restricted by mouse and Macaque rhesus major histocompatibility complex (MHC) class I molecules, were included in the target immunogen. The gene encoding the TCI protein was assembled, cloned into vector plasmids and expressed in a prokaryotic and a eukaryotic system. The presence of HIV-1 protein fragments in the immunogen structure was ascertained by ELISA and immunoblotting using panels of HIV-1-positive sera and monoclonal antibodies to p24. It has been demonstrated that DNA vaccine can induce both specific T cell responses (CTL and blast transformation) and specific antibodies in mice immunized with pcDNA-TCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2003.09.048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!