Repetitive transcranial magnetic stimulation (rTMS) offers a powerful new technique for investigating the distinct contributions of the cortical language areas. We have used this method to examine the role of the left inferior frontal gyrus (IFG) in phonological processing and verbal working memory. Functional neuroimaging studies have implicated the posterior part of the left IFG in both phonological decision making and subvocal rehearsal mechanisms, but imaging is a correlational method and it is therefore necessary to determine whether this region is essential for such processes. In this paper we present the results of two experiments in which rTMS was applied over the frontal operculum while subjects performed a delayed phonological matching task. We compared the effects of disrupting this area either during the delay (memory) phase or at the response (decision) phase of the task. Delivered at a time when subjects were required to remember the sound of a visually presented word, rTMS impaired the accuracy with which they subsequently performed the task. However, when delivered later in the trial, as the subjects compared the remembered word with a given pseudoword, rTMS did not impair accuracy. Performance by the same subjects on a control task that required the processing of nonverbal visual stimuli was unaffected by the rTMS. Similarly, performance on both tasks was unaffected by rTMS delivered over a more anterior site (pars triangularis). We conclude that the opercular region of the IFG is necessary for the normal operation of phonologically based working memory mechanisms. Furthermore, this study shows that rTMS can shed further light on the precise role of cortical language areas in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/089892904322984571 | DOI Listing |
J Affect Disord
January 2025
Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China. Electronic address:
Background: The potential pairwise connections among high-sensitivity C-reactive protein (hs-CRP), striatum-based circuits, and anhedonia in adolescent depression are not clear. This study aimed to explore whether hs-CRP levels in adolescents with depression influence anhedonia via alterations of striatum-based functional connectivity (FC).
Methods: A total of 201 adolescents (92 with depressive episodes with anhedonia (anDE), 58 with DE without anhedonia (non-anDE), and 51 healthy controls (HCs)) underwent resting-state functional magnetic resonance imaging (fMRI) and completed the anhedonia subscale of the Children's Depression Inventory (CDI).
Cortex
December 2024
Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; University Hospital and Faculty of Medicine Leipzig, Clinic for Cognitive Neurology, Leipzig, Germany.
Retrieving words quickly and correctly is an important language competence. Semantic contexts, such as prior naming of categorically related objects, can induce conceptual priming but also lexical-semantic interference, the latter likely due to enhanced competition during lexical selection. In the continuous naming (CN) paradigm, such semantic interference is evident in a linear increase in naming latency with each additional member of a category out of a seemingly random sequence of pictures being named (cumulative semantic interference/CSI effect).
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Physical Therapy, Hangzhou Geriatric Hospital, 310022 Hangzhou, Zhejiang, China.
Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.
View Article and Find Full Text PDFBrain Lang
January 2025
Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA; Neurology Service, North Florida/South GeorgiaUSA Veterans Health System and Department of Neurology, University of Florida, Gainesville, FL 32608, USA. Electronic address:
Introduction: Although many white matter tracts underlying language functions have been identified, even in aggregate they do not provide a sufficiently detailed and expansive picture to enable us to fully understand the computational processes that might underly language production and comprehension. We employed diffusion tensor tractography (DTT) with a tensor distribution model to more extensively explore the white matter tracts supporting core language functions. Our study was guided by hypotheses stemming largely from the aphasia literature.
View Article and Find Full Text PDFClin Radiol
December 2024
Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. Electronic address:
Aim: To provide a theoretical basis for the study of the pathogenesis of residual dizziness (RD) from the perspective of imaging.
Materials And Methods: The general clinical data of the RD group and healthy control (HC) group were statistically analysed by two independent sample t tests, rank sum tests or chi-square tests. The imaging data of the two groups of people were preprocessed and statistically analysed by using the data processing and analysis for brain imaging (DPABI) software package.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!