The vitamin biotin is an endogenous molecule that acts as an important cofactor for several carboxylases in the citric acid cycle. Disorders of biotin metabolism produce neurological symptoms that range from ataxia to sensory loss, suggesting the presence of biotin in specific functional systems of the CNS. Although biotin has been described in some cells of nonmammalian nervous systems, the distribution of biotin in mammalian CNS is virtually unknown. We report the presence of biotin in select regions of rat CNS, as revealed with a monoclonal antibody directed against biotin and with avidin- and streptavidin-conjugated labels. Detectable levels of biotin were primarily found caudal to the diencephalon, with greatest expression in the cerebellar motor system and several brainstem auditory nuclei. Biotin was found as a somatic label in cerebellar Purkinje cells, in cell bodies and proximal dendrites of cerebellar deep nuclear neurons, and in red nuclear neurons. Biotin was detected in cells of the spiral ganglion, somata and proximal dendrites of cells in the cochlear nuclei, superior olivary nuclei, medial nucleus of the trapezoid body, and nucleus of the lateral lemniscus. Biotin was further found in pontine nuclei and fiber tracts, the substantia nigra pars reticulata, lateral mammillary nucleus, and a small number of hippocampal interneurons. Biotin was detected in glial cells of major tract systems throughout the brain but was most prominent in tracts of the hindbrain. Biotin is thus expressed in select regions of rat CNS with a distribution that correlates to the known clinical sequelae associated with biotin deficiencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.20109 | DOI Listing |
Food Chem
January 2025
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China. Electronic address:
Lateral flow immunoassay (LFIA) has the advantages of simplicity and rapidness, and is widely used for the rapid detection of pesticides and other analytes. However, small molecule compounds such as pesticides are often analyzed using competitive LFIA (CLFIA), whose sensitivity often does not meet the actual needs. In this study, a noncompetitive LFIA (NLFIA) for deltamethrin (DM) with high sensitivity was developed by using anti-immunocomplex peptides (AIcPs).
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
The esterase EstSIT01 from can catalyze the asymmetric hydrolysis of -dimethyl ester to produce the crucial chiral intermediate (4, 5)-hemimethyl ester for -biotin synthesis. Despite its high yields and stereoselectivity, the low thermostability of EstSIT01 limits its practical application. Herein, two kinds of rational strategies were combined to enhance the thermostability of EstSIT01.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
EPFL: Ecole Polytechnique Federale de Lausanne, Institute of Chemical Sciences and Engineering, EPFL-ISIC-LSCI, BCH 3305, 1015, Lausanne, SWITZERLAND.
Artificial metalloenzymes (ArMs) enable the integration of abiotic cofactors within a native protein scaffold, allowing for non-natural catalytic activities. Previous ArMs, however, have primarily relied on single cofactor systems, limiting them to only one catalytic function. Here we present an approach to construct ArMs embedding two catalytic cofactors based on the biotin-streptavidin technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!