Populus nigra L. is a pioneer tree species of riparian ecosystems that is threatened with extinction because of the loss of its natural habitat. To evaluate the existing genetic diversity of P. nigra within ex-situ collections, we analyzed 675 P. nigra L. accessions from nine European gene banks with three amplified fragment length polymorphism (AFLP) and five microsatellite [or simple sequence repeat (SSR)] primer combinations, and 11 isozyme systems. With isozyme analysis, hybrids could be detected, and only 3% were found in the gene bank collection. AFLP and SSR analyses revealed effectively that 26% of the accessions were duplicated and that the level of clonal duplication varied from 0% in the French gene bank collection up to 78% in the Belgian gene bank collection. SSR analysis was preferred because AFLP was technically more demanding and more prone to scoring errors. To assess the genetic diversity, we grouped material from the gene banks according to topography of the location from which the accessions were originally collected (river system or regions separated by mountains). Genetic diversity was expressed in terms of the following parameters: percentage of polymorphic loci, observed and effective number of alleles, and Nei's expected heterozygosity or gene diversity (for AFLP). Genetic diversity varied from region to region and depended, to some extent, on the marker system used. The most unique alleles were identified in the Danube region (Austria), the Rhône region (France), Italy, the Rijn region (The Netherlands), and the Ebro region (Spain). In general, the diversity was largest in the material collected from the regions in Southern Europe. Dendrograms and principal component analysis resulted in a clustering according to topography. Material from the same river systems, but from different countries, clustered together. The genetic differentiation among the regions (F(st)/G(st)) was moderate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-003-1523-6DOI Listing

Publication Analysis

Top Keywords

genetic diversity
20
gene bank
16
bank collection
12
gene banks
8
diversity
7
gene
7
genetic
6
region
6
ex-situ conservation
4
conservation black
4

Similar Publications

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Shallow whole-genome sequencing (sWGS) offers a cost-effective approach to detect copy number alterations (CNAs). However, there remains a gap for a standardized workflow specifically designed for sWGS analysis. To address this need, in this work we present SAMURAI, a bioinformatics pipeline specifically designed for analyzing CNAs from sWGS data in a standardized and reproducible manner.

View Article and Find Full Text PDF

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

Background: Antiretroviral treatment increases the risk of accumulation of resistance mutations that negatively impact the possibilities of future treatment. This study aimed to present the frequency of HIV-1 antiretroviral resistance mutations and the genetic diversity among children with virological failure in five pediatric care facilities in Benin.

Methods: A cross-sectional study was carried out from November 20, 2020, to November 30, 2022, in children under 15 years of age who failed ongoing antiretroviral treatment at five facilities care in Benin (VL > 3log10 on two consecutive realizations three months apart).

View Article and Find Full Text PDF

RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!