Interleukin-1beta (IL-1beta) has been recognized as a potent stimulus for the synthesis of prostaglandin (PG), which has been implicated in inflammatory responses of the airways. However, the mechanisms underlying IL-1beta-induced cyclooxygenase (COX) expression and PGE(2) synthesis via activation of p42/p44 and p38 mitogen-activated protein kinases (MAPKs) in human tracheal smooth muscle cells (HTSMCs) are not completely understood. We found that IL-1beta increased COX-2 expression and PGE(2) synthesis in time- and concentration-dependent manners. Both specific phosphatidylcholine-phospholipase C inhibitor (D609) and protein kinase C inhibitor (GF109203X) attenuated IL-1beta-induced responses in HTSMCs. IL-1beta-induced COX-2 expression and PGE(2) synthesis were also inhibited by an inhibitor of MEK1/2 (PD98059) and inhibitors of p38 MAPK (SB203580 and SB202190), respectively, suggesting the involvement of p42/p44 and p38 MAPKs in these responses. This hypothesis was further supported by the transient activation of p42/p44 and p38 MAPKs induced by IL-1beta. Furthermore, IL-1beta-induced activation of nuclear factor-kappaB (NF-kappaB) was inversely correlated with the degradation of IkappaB-alpha in HTSMCs. IL-1beta-induced COX-2 expression and PGE(2) synthesis were inhibited by the NF-kappaB inhibitor pyrrolidinedithiocarbamate. These findings suggest that the expression of COX-2 is correlated with the release of PGE(2) from IL-1beta-challenged HTSMCs, which is mediated, at least in part, through p42/p44 and p38 MAPKs and NF-kappaB signaling pathways in HTSMCs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02254443DOI Listing

Publication Analysis

Top Keywords

p42/p44 p38
20
expression pge2
16
pge2 synthesis
16
cox-2 expression
12
p38 mapks
12
human tracheal
8
tracheal smooth
8
smooth muscle
8
muscle cells
8
involvement p42/p44
8

Similar Publications

The inflammation of the airway and lung could be triggered by upregulation cyclooxygenase (COX)-2 and prostaglandin E (PGE) induced by various proinflammatory factors. COX-2 induction by thrombin has been shown to play a vital role in various inflammatory diseases. However, in human tracheal smooth muscle cells (HTSMCs), how thrombin enhanced the levels of COX-2/PGE is not completely characterized.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain tumors and the hardest type of cancer to treat. Therapies targeting developmental pathways, such as Notch, eliminate neoplastic glioma cells, but their efficacy can be limited by various mechanisms. Combination regimens may represent a good opportunity for effective therapies with durable effects.

View Article and Find Full Text PDF

Pterygium belongs to an ocular surface disease with triangular-shaped hyperplastic growth, characterized by conjunctivalization, inflammation, and connective tissue remodeling. We previously demonstrated neoplastic-like properties of pterygium cells. Green tea catechin, (-)-epigallocatechin gallate (EGCG), has been shown to possess antitumorigenic properties; herein, we aimed to determine the effects of green tea catechins on human primary pterygium cell survival and migration and compared to that on patients' conjunctival cells.

View Article and Find Full Text PDF

The lamina cribrosa (LC) is a key site of fibrotic damage in glaucomatous optic neuropathy and the precise mechanisms of LC change remain unclear. Elevated Ca is a major driver of fibrosis, and therefore intracellular Ca signaling pathways are relevant glaucoma-related mechanisms that need to be studied. Protein kinase C (PKC), mitogen-activated MAPK kinases (38 and 42/44-MAPK), and the PI3K/mTOR axis are key Ca signal transducers in fibrosis and we therefore investigated their expression and activity in normal and glaucoma cultured LC cells.

View Article and Find Full Text PDF

In the regions of tissue injuries and inflammatory diseases, sphingosine 1-phosphate (S1P), a proinflammatory mediator, is increased. S1P may induce the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E (PGE) system in various types of cells to exacerbate heart inflammation. However, the detailed molecular mechanisms by which S1P induces COX-2 expression in human cardiac fibroblasts (HCFs) remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!