Pentachlorophenol (PCP), a highly toxic anthropogenic pesticide, can be mineralized by Sphingobium chlorophenolicum, a gram-negative bacterium isolated from PCP-contaminated soil. However, degradation of PCP is slow and S. chlorophenolicum cannot tolerate high levels of PCP. We have used genome shuffling to improve the degradation of PCP by S. chlorophenolicum. We have obtained several strains that degrade PCP faster and tolerate higher levels of PCP than the wild-type strain. Several strains obtained after the third round of shuffling can grow on one-quarter-strength tryptic soy broth plates containing 6 to 8 mM PCP, while the original strain cannot grow in the presence of PCP at concentrations higher than 0.6 mM. Some of the mutants are able to completely degrade 3 mM PCP in one-quarter-strength tryptic soy broth, whereas no degradation can be achieved by the wild-type strain. Analysis of several improved strains suggests that the improved phenotypes are due to various combinations of mutations leading to an enhanced growth rate, constitutive expression of the PCP degradation genes, and enhanced resistance to the toxicity of PCP and its metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC383174 | PMC |
http://dx.doi.org/10.1128/AEM.70.4.2391-2397.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!