Ciliogenesis is divided into four stages: (1) generation of centrioles, (2) migration of duplicated centrioles, (3) formation of the basal body-associated structures, and (4) elongation of cilia. The ultrastructural profile of ciliogenesis is fundamentally the same among various kinds of animal species. In acentriolar centriologenesis, centrioles are generated around deuterosomes by the use of fibrous granules. Components of the centriolar precursor structures, and genes that regulate the differentiation of ciliated cells, have been revealed. Ciliary abnormalities are classified into two categories: specific congenital defects of ciliary structure and acquired nonspecific anomalies of the ciliary apparatus. When ciliogenesis is disturbed, various nonspecific ciliary abnormalities develop in the cell. Inhibition of centriole migration results in the development of intracytoplasmic axonemes, cilia within periciliary sheaths, and intracellular ciliated vacuoles. Swollen cilia and the bulging type of compound cilia are formed during ciliary budding and elongation. Primary cilia can also develop from one of a pair of centrioles. They lack dynein arms and are immobile, but work as a mechanosensor and play a role during morphogenesis of the kidney. Abnormal function or structure of primary cilia results in the development of polycystic kidney disease. The axonemes of primary cilia or monocilia in the embryonic node cells are associated with dynein arms and move vortically. They have a role in determining the left-right (L-R) asymmetry of the fetus. This review also discusses the ciliogenesis of a primary cilium in the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0074-7696(04)34003-9 | DOI Listing |
Medicina (Kaunas)
December 2024
Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.
View Article and Find Full Text PDFCells
December 2024
Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France.
The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Biol Reprod
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA.
The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China. Electronic address:
The sterile insect technique (SIT) is a well-established and environmentally benign method for population control. Identifying genes that regulate insect fertility while preserving growth and development is crucial for implementing a novel SIT-based pest management approach utilizing CRISPR/Cas9 to target these genes for genetic manipulation. Tektin (TEKT), an essential alpha-helical protein pivotal in sperm formation due to its role in cilia and flagella assembly, has garnered attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!