Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study is to describe an imaging method for identifying and characterising physeal growth arrest following physeal plate aggression. The authors describe the use of three-dimensional MRI performed with fat-suppressed three-dimensional spoiled gradient-recalled echo sequences followed by manual image reconstruction to create a 3D model of the physeal plate. This retrospective series reports the analysis of 33 bony physeal bridges in 28 children (mean age 10.5 years) with the use of fat-suppressed three-dimensional spoiled gradient-recalled echo imaging and 3D reconstructions from the source images. 3D reconstructions were obtained after the outlining was done manually on each source image. Files of all patients were reviewed for clinical data at the time of MRI, type of injury, age at MRI and bone bridge characteristics on reconstructions. Twenty-one (63%) of the 33 bridges were post-traumatic and were mostly situated in the lower extremities (19/21). The distal tibia was involved in 66% (14/21) of the cases. Bridges due to causes other than trauma were located in the lower extremities in 10/12 cases, and the distal femur represented 60% of these cases. Of the 28 patients, five presented with two bridges involving two different growth plates making a total of 33 physeal bone bars. The location and shape of each bridge was accurately identified in each patient, and in post-traumatic cases, 89% of bone bars were of Ogden type III (central) or I (peripheral). Reconstructions were obtained in 15 min and are easy to interpret. Volumes of the physeal bone bridge(s) and of the remaining normal physis were calculated. The bone bridging represented less than 1% to 47% of the total physeal plate volume. The precise shape and location of the bridge can be visualised on the 3D reconstructions. This information is useful in the surgical management of these deformities; as for the eight patients who underwent bone bar resection, an excellent correspondence was found by the treating surgeon between the MRI 3D model and the per-operative findings. Accurate 3D mapping obtained after manual reconstruction can also visualise very small physeal plates and bridges such as in cases of finger physeal disorders. MR imaging with fat-suppressed three-dimensional spoiled gradient-recalled echo sequences can be used to identify patterns of physeal growth arrest. 3D reconstructions can be obtained from the manual outlining of source images to provide an accurate representation of the bony bridge that can be a guide during surgical management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-004-2319-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!