There is clinical and experimental evidence that monoamine neurons respond to lesions with a wide range of compensatory adaptations aimed at preserving their functional integrity. Neurotoxin-induced lesions are followed by increased synthesis and release of transmitter from residual monoamine fibers and by axonal sprouting. However, the fate of lesioned neurons after long survival periods remains largely unknown. Whether regenerative sprouting may contribute significantly to recovery of function following lesions which induce cell loss has been questioned. We have previously analyzed the response of locus coeruleus (LC) neurons to systemic administration of the noradrenergic (NE) neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to adult rats. This drug causes ablation of nearly all LC axon terminals within 2 weeks after administration, followed by a profound loss of LC cell bodies 6 months later. The present study was conducted to determine the fate of surviving LC neurons and to characterize their potential for regenerative sprouting during a 16 month period after DSP-4 treatment. The time-course and extent of LC neuron degeneration were analyzed quantitatively in Nissl-stained sections, and the regenerative response of residual neurons was characterized by dopamine-beta-hydroxylase immunohistochemistry. The results document that LC neurons degenerate gradually after DSP-4 treatment, cell loss reaching on average 57% after 1 year. LC neurons which survive the lesion exhibit a vigorous regenerative response, even in those animals in which cell loss exceeds 60-70%. This regenerative process leads progressively to restoration of the NE innervation pattern in the forebrain, with some regions becoming markedly hyperinnervated. In stark contrast to the forebrain, very little reinnervation takes place in the brainstem, cerebellum and spinal cord. These findings suggest that regenerative sprouting of residual neurons is an important compensatory mechanism by which the LC may regain much of its functional integrity in the presence of extensive cell loss. Furthermore, regeneration of LC axons after DSP-4 treatment is region-specific, suggesting that the pattern of reinnervation is controlled by target areas. Elucidation of the factors underlying recovery of LC neurons after DSP-4 treatment may provide insights into the compensatory mechanisms of central neurons after injury and in disease states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.903210309 | DOI Listing |
Mol Med
January 2025
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Ophthalmology Department, Faculty of Medicine - Suez Canal University Hospitals, 4.5 Kilo - Ring Road, Ismailia, 41522, Egypt.
Purpose: To assess the effect of anterior chamber depth on corneal endothelium using specular microscopy following uneventful phacoemulsification among cataract patients with different axial lengths.
Methods: The study was conducted in a quasi-experimental design including 300 eyes of 300 patients with grade three age-related nuclear cataract distributed equally based on their axial length into three equal groups. All eyes had grade three nuclear cataract.
Mol Psychiatry
January 2025
Department of Psychiatry, University of Oxford, Oxford, UK.
Cognitive and neural mechanisms underlying bipolar disorder (BD) and its treatment are still poorly understood. Here we examined the role of adaptations in risk-taking using a reward-guided decision-making task. We recruited volunteers with high (n = 40) scores on the Mood Disorder Questionnaire, MDQ, suspected of high risk for bipolar disorder and those with low-risk scores (n = 37).
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
Neurodegenerative diseases of both the central and peripheral nervous system are characterized by selective neuronal vulnerability, i.e., pathology that affects particular types of neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!