The p53 tumor suppressor is phosphorylated in response to various cellular stress signals, such as DNA damage, leading to its release from MDM2 and consequent stabilization and activation as a transcription factor. In human U2OS cells, treatment with adriamycin causes p53 to be phosphorylated on all six serine residues tested, leading to the dissociation of p53 from MDM2 and transcription of the p21 and mdm2 genes. In contrast, in these cells, IPTG-dependent induction of p14ARF, which sequesters MDM2 away from p53, does not lead to detectable phosphorylation of any of the five N-terminal serine residues tested (6, 9, 15, 20, 37). Only C-terminal serine 392 is phosphorylated. However, the increase of p21 and mdm2 mRNAs was indistinguishable following treatment with adriamycin or induction of p14ARF. By using cDNA arrays to examine global p53-dependent gene expression in response to adriamycin or p14ARF, we found that most genes were regulated similarly by the two treatments. However, a subset of p53-regulated genes whose products have proliferative roles or regulate VEGF activity, newly described here, are repressed by p14ARF much more than by adriamycin. We conclude that the phosphorylation of p53 on N-terminal serine residues is not required for increased transcription of the great majority of p53-responsive genes and that the induction of p53 by p14ARF, with little phosphorylation, leads to substantial repression of genes whose products have roles in proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1207575 | DOI Listing |
Microbiol Spectr
January 2025
Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NHCl), indicating entry via the endocytosis route.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro.
O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFBacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts.
View Article and Find Full Text PDFPlant J
January 2025
Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting a great many crops including peanut. The pathogen damages plants via secreting type Ш effector proteins (T3Es) into hosts for pathogenicity. Here, we characterized RipAU was among the most toxic effectors as ΔRipAU completely lost its pathogenicity to peanuts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!