The activation of p38 mitogen-activated protein kinase (MAPK) has been implicated in the pathological changes accompanying inflammatory and apoptotic processes of various cell types including neurons. In a kainic acid (KA)-induced mouse seizure model, p38 MAPK is induced in reactive astrocytes in the CA3 region of the hippocampus where severe neuronal loss occurs. Here we report the delayed and protracted activation of p38 MAPK in the CA3 region of the hippocampus of mice treated with KA. In this model, the inhibition of p38 MAPK isoforms by SB203580, a specific inhibitor, attenuated neuronal loss in the CA3 and CA1 regions of the hippocampus, which was accompanied by the suppression of the p38 MAPK activation as well as astrogliosis. Thus, the delayed and sustained induction of p38 MAPK plays a crucial role in the neuronal damage of KA-induced brain seizures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2004.02.009DOI Listing

Publication Analysis

Top Keywords

p38 mapk
20
neuronal loss
12
induction p38
8
p38 mitogen-activated
8
mitogen-activated protein
8
protein kinase
8
activation p38
8
ca3 region
8
region hippocampus
8
p38
7

Similar Publications

Targeting p38 MAPK signaling pathway and neutrophil extracellular traps: An important anti-inflammatory mechanism of Huangqin Qingre Chubi Capsule in rheumatoid arthritis.

Int Immunopharmacol

January 2025

Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui 230031, China.

Rheumatoid arthritis (RA) is a common chronic autoimmune disease. Neutrophils release and their extracellular traps (NETs) tend to result in synovial inflammation and cartilage damage. Huangqin Qingre Chubi Capsule (HQC) is an important herbal formulation for RA treatment and has been used for many years.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

In Situ Conversion of Atherosclerotic Plaques' Iron into Nanotheranostics.

J Am Chem Soc

January 2025

Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.

The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.

View Article and Find Full Text PDF

Inhibition of DEK restores hematopoietic stem cell function in Fanconi anemia.

J Exp Med

March 2025

Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.

Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!