Function of the Trithorax-like gene during Drosophila development.

Dev Biol

Centro de Biología Molecular, CSIC-UAM, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Published: April 2004

Maintenance of homeotic gene expression during Drosophila development relies on the Polycomb and the trithorax groups of genes. Classically, the Polycomb proteins act as repressors of homeotic gene function, whereas trithorax proteins function as activators. However, recent investigation has indicated that some of these maintenance genes may act both as repressors and activators. One of those is the Drosophila Trithorax-like gene that codes for the GAGA factor. To investigate its dual activator/repressor role, we have studied the function of the Trithorax-like throughout Drosophila development. Embryos lacking both the maternal and the zygotic Trithorax-like function do not develop suggesting that Trithorax-like might be required in oogenesis. Homozygous Trithorax-like null mutant embryos show reduced expression levels of some of the homeotic proteins. Trithorax-like mutant larval clones, however, do not show phenotypes indicative of either activation or repression of homeotic gene function. These results suggest that Trithorax-like is required during embryogenesis but not throughout larval development for the regulation of homeotic gene expression. Moreover, this temporal requirement seems also to regulate MCP-mediated silencing. Finally, lack of Trithorax-like function modulates the gain of function phenotypes caused by over-expression of homeotic genes. To explain Trithorax-like gene function, we propose a model where very early in development, GAGA factor probably establishes a chromatin ground state for transcription. The differential "on/off" transcriptional state of the homeotic genes is then established and propagated by the action of the specific regulatory proteins independently of the GAGA factor. We also suggest that GAGA factor may not have a dual activator/repressor function. Rather, Trithorax-like mutations may produce dual loss of activation and loss of repression effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2004.01.006DOI Listing

Publication Analysis

Top Keywords

function trithorax-like
16
homeotic gene
16
gaga factor
16
trithorax-like gene
12
drosophila development
12
gene function
12
function
10
trithorax-like
10
gene expression
8
dual activator/repressor
8

Similar Publications

Maturation and fine-tuning of neural circuits frequently require neuromodulatory signals that set the excitability threshold, neuronal connectivity, and synaptic strength. Here, we present a mechanistic study of how neuromodulator-stimulated intracellular Ca signals, through the store-operated Ca channel Orai, regulate intrinsic neuronal properties by control of developmental gene expression in flight-promoting central dopaminergic neurons (fpDANs). The fpDANs receive cholinergic inputs for release of dopamine at a central brain tripartite synapse that sustains flight (Sharma and Hasan, 2020).

View Article and Find Full Text PDF

The misregulation of mitochondria-associated genes caused by GAGA-factor lack promotes autophagic germ cell death in Drosophila testes.

Genetica

December 2023

Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.

The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants.

View Article and Find Full Text PDF

Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo.

Biochim Biophys Acta Gene Regul Mech

February 2022

Department of Life Sciences and Institute of Genomic Sciences, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan. Electronic address:

Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo.

View Article and Find Full Text PDF

Drosophila protein GAGA (GAF) is a factor of epigenetic transcription regulation of a large group of genes with a wide variety of cellular functions. GAF is encoded by the Trithorax-like (Trl) gene, which is important for the formation of various organs and tissues at all stages of ontogenesis. In our previous works, we showed that this protein is necessary for the development of the reproductive system, both in males and females of Drosophila.

View Article and Find Full Text PDF

OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice.

J Integr Plant Biol

January 2022

State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.

Root architecture is one of the most important agronomic traits that determines rice crop yield. The primary root (PR) absorbs mineral nutrients and provides mechanical support; however, the molecular mechanisms of PR elongation remain unclear in rice. Here, the two loss-of-function T-DNA insertion mutants of root length regulator 4 (OsRLR4), osrlr4-1 and osrlr4-2 with longer PR, and three OsRLR4 overexpression lines, OE-OsRLR4-1/-2/-3 with shorter PR compared to the wild type/Hwayoung (WT/HY), were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!