Development of ready-to-inject in situ formable controlled release gel systems for proteins is extremely challenging due to poor stability of proteins in the organic solvents typically used to fabricate these systems and because of the need of initial drying of proteins. The focus of the present study was to develop and characterize injectable controlled release systems composed of crystals of amylase, a model protein, suspended in solutions of polymeric and non-polymeric matrix materials in organic solvents. In this study, alpha-amylase derived from Aspergillus oryzae was crystallized and crystals were suspended in a poly(DL-lactide-co-glycolide) (PLGA) solution in acetonitrile (PLGA/acetonitrile), or in sucrose acetate isobutyrate (SAIB) plasticized with ethanol (SAIB/ethanol) systems. The results indicate that the protein crystals could be incorporated in these in situ formable gels without the need for initial drying. The crystals withstand organic solvents and water/organic solvent interfaces, and provide high protein loading (>30%) in these systems. Moreover, changing the morphology of the amylase crystals successfully modulated amylase release profiles. Study of long-term stability at 4 degrees C revealed a greater stability of crystalline protein compared to amorphous amylase. The above-mentioned data suggest that protein crystals might offer greater feasibility in developing sustained release injectable in situ formable protein depot systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2004.01.019 | DOI Listing |
Chemistry
January 2025
University of Cambridge, Department of Chemistry, Lensfield Road, CB2 1EW, Cambridge, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The ability to release a molecule from a larger construct in a controlled manner is of great importance to produce effective prodrugs, antibody-drug conjugates, and chemical probes. Amides are ubiquitous functional groups and yet methods to utilise them as molecular release handles are seldom reported. This concept article highlights the advances made in amide release strategies and how these approaches have been utilised.
View Article and Find Full Text PDFGeriatr Psychol Neuropsychiatr Vieil
December 2024
Research Department, Biostatistics, Lille Catholic Hospitals, Lille, France.
The personalized prescription plan (PPP) summarizes the changes made to a patient's prescription on discharge from hospital. The aim of the present study was to evaluate 30-day medication continuity in older patients whose PPP was implemented at hospital discharge. Prospective randomized controlled trial including people aged at least 75 discharged from an acute geriatric unit.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India.
Polymeric nano-discs offer a promising and adaptable nanocarrier platform for topical applications involving the targeted administration of drugs. These biocompatible polymer-based, disc-shaped, nanoscale structures have drawn interest due to their exceptional capacity to encapsulate a diverse range of theranostics. Theranostics, the concept of combining treatments and diagnostics into a single system, is the core of attraction.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad-826004, India.
Drug delivery vehicles optimize therapeutic outcomes by enhancing drug efficacy, minimizing side effects, and providing controlled release. Injectable hydrogels supersede conventional ones in the field of drug delivery owing to their less invasive administration and improved targeting. However, they face challenges such as low biodegradability and biocompatibility, potentially compromising their effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!